有机金属聚合物复合材料的热机械磨损

IF 0.5 4区 工程技术 Q4 ENGINEERING, MECHANICAL
F. F. Yusubov
{"title":"有机金属聚合物复合材料的热机械磨损","authors":"F. F. Yusubov","doi":"10.3103/S1068366625700321","DOIUrl":null,"url":null,"abstract":"<p>Wear mechanisms of organic composite materials with low content of metallic elements for braking systems of medium and heavy loading have been studied. The tests were carried out on the “finger–disc” scheme on the MMW-1 friction machine. The thermal effect during friction was modelled by the finite element method with focus on heat distribution on the surface. It was found that the sliding speed has the greatest influence on the wear intensity and constitutes 52.24%. A decrease in the friction coefficient at temperatures above 490°C was observed. Materials with high Cu–C content (20 wt %) showed less wear and lower friction coefficients due to graphite, while materials with low Cu–C content (5 wt %) were subjected to more pronounced abrasive wear due to overheating. Composites with 25 wt % binder also showed signs of abrasion, while at 35 wt % binder content the surface was characterized by a more uniform topography. However, the increased binder content led to local thermal failure, which manifested itself in the form of cracks and surface damage. The practical significance lies in the possibility of optimization of materials to improve their wear resistance at high temperatures and loads.</p>","PeriodicalId":633,"journal":{"name":"Journal of Friction and Wear","volume":"46 1","pages":"69 - 74"},"PeriodicalIF":0.5000,"publicationDate":"2025-07-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Thermomechanical Wear of Organic Metallopolymer Composites\",\"authors\":\"F. F. Yusubov\",\"doi\":\"10.3103/S1068366625700321\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Wear mechanisms of organic composite materials with low content of metallic elements for braking systems of medium and heavy loading have been studied. The tests were carried out on the “finger–disc” scheme on the MMW-1 friction machine. The thermal effect during friction was modelled by the finite element method with focus on heat distribution on the surface. It was found that the sliding speed has the greatest influence on the wear intensity and constitutes 52.24%. A decrease in the friction coefficient at temperatures above 490°C was observed. Materials with high Cu–C content (20 wt %) showed less wear and lower friction coefficients due to graphite, while materials with low Cu–C content (5 wt %) were subjected to more pronounced abrasive wear due to overheating. Composites with 25 wt % binder also showed signs of abrasion, while at 35 wt % binder content the surface was characterized by a more uniform topography. However, the increased binder content led to local thermal failure, which manifested itself in the form of cracks and surface damage. The practical significance lies in the possibility of optimization of materials to improve their wear resistance at high temperatures and loads.</p>\",\"PeriodicalId\":633,\"journal\":{\"name\":\"Journal of Friction and Wear\",\"volume\":\"46 1\",\"pages\":\"69 - 74\"},\"PeriodicalIF\":0.5000,\"publicationDate\":\"2025-07-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Friction and Wear\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://link.springer.com/article/10.3103/S1068366625700321\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"ENGINEERING, MECHANICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Friction and Wear","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.3103/S1068366625700321","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
引用次数: 0

摘要

研究了中重载制动系统用低金属元素有机复合材料的磨损机理。在MMW-1摩擦机上采用“指盘”方案进行了试验。采用有限元方法模拟摩擦过程中的热效应,重点研究摩擦表面的热分布。结果表明,滑动速度对磨损强度的影响最大,占52.24%。当温度高于490℃时,摩擦系数减小。由于石墨的作用,高Cu-C含量(20% wt %)的材料表现出较少的磨损和较低的摩擦系数,而低Cu-C含量(5% wt %)的材料由于过热而遭受更明显的磨料磨损。25%的粘合剂含量的复合材料也显示出磨损的迹象,而35%的粘合剂含量的复合材料表面具有更均匀的形貌。然而,粘结剂含量的增加导致了局部热破坏,表现为裂纹和表面损伤。其实际意义在于对材料进行优化,以提高其在高温和载荷下的耐磨性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Thermomechanical Wear of Organic Metallopolymer Composites

Thermomechanical Wear of Organic Metallopolymer Composites

Wear mechanisms of organic composite materials with low content of metallic elements for braking systems of medium and heavy loading have been studied. The tests were carried out on the “finger–disc” scheme on the MMW-1 friction machine. The thermal effect during friction was modelled by the finite element method with focus on heat distribution on the surface. It was found that the sliding speed has the greatest influence on the wear intensity and constitutes 52.24%. A decrease in the friction coefficient at temperatures above 490°C was observed. Materials with high Cu–C content (20 wt %) showed less wear and lower friction coefficients due to graphite, while materials with low Cu–C content (5 wt %) were subjected to more pronounced abrasive wear due to overheating. Composites with 25 wt % binder also showed signs of abrasion, while at 35 wt % binder content the surface was characterized by a more uniform topography. However, the increased binder content led to local thermal failure, which manifested itself in the form of cracks and surface damage. The practical significance lies in the possibility of optimization of materials to improve their wear resistance at high temperatures and loads.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Friction and Wear
Journal of Friction and Wear ENGINEERING, MECHANICAL-MATERIALS SCIENCE, MULTIDISCIPLINARY
CiteScore
1.50
自引率
28.60%
发文量
21
审稿时长
6-12 weeks
期刊介绍: Journal of Friction and Wear is intended to bring together researchers and practitioners working in tribology. It provides novel information on science, practice, and technology of lubrication, wear prevention, and friction control. Papers cover tribological problems of physics, chemistry, materials science, and mechanical engineering, discussing issues from a fundamental or technological point of view.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信