异质SU(3)模空间的局部描述

IF 2.6 1区 物理与天体物理 Q1 PHYSICS, MATHEMATICAL
Hannah de Lázari, Jason D. Lotay, Henrique N. Sá Earp, Eirik Eik Svanes
{"title":"异质SU(3)模空间的局部描述","authors":"Hannah de Lázari,&nbsp;Jason D. Lotay,&nbsp;Henrique N. Sá Earp,&nbsp;Eirik Eik Svanes","doi":"10.1007/s00220-025-05309-2","DOIUrl":null,"url":null,"abstract":"<div><p>The heterotic <span>\\(\\textrm{SU}(3)\\)</span> system, also known as the Hull–Strominger system, arises from compactifications of heterotic string theory to six dimensions. This paper investigates the local structure of the moduli space of solutions to this system on a compact 6-manifold <i>X</i>, using a vector bundle <span>\\(Q=(T^{1,0}X)^* \\oplus {{\\textrm{End}}}(E) \\oplus T^{1,0}X\\)</span>, where <span>\\(E\\rightarrow X\\)</span> is the classical gauge bundle arising in the system. We establish that the moduli space has an expected dimension of zero. We achieve this by studying the deformation complex associated to a differential operator <span>\\(\\bar{D}\\)</span>, which emulates a holomorphic structure on <i>Q</i>, and demonstrating an isomorphism between the two cohomology groups which govern the infinitesimal deformations and obstructions in the deformation theory for the system. We also provide a Dolbeault-type theorem linking these cohomology groups to Čech cohomology, a result which might be of independent interest, as well as potentially valuable for future research.</p></div>","PeriodicalId":522,"journal":{"name":"Communications in Mathematical Physics","volume":"406 8","pages":""},"PeriodicalIF":2.6000,"publicationDate":"2025-07-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s00220-025-05309-2.pdf","citationCount":"0","resultStr":"{\"title\":\"Local Descriptions of the Heterotic SU(3) Moduli Space\",\"authors\":\"Hannah de Lázari,&nbsp;Jason D. Lotay,&nbsp;Henrique N. Sá Earp,&nbsp;Eirik Eik Svanes\",\"doi\":\"10.1007/s00220-025-05309-2\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The heterotic <span>\\\\(\\\\textrm{SU}(3)\\\\)</span> system, also known as the Hull–Strominger system, arises from compactifications of heterotic string theory to six dimensions. This paper investigates the local structure of the moduli space of solutions to this system on a compact 6-manifold <i>X</i>, using a vector bundle <span>\\\\(Q=(T^{1,0}X)^* \\\\oplus {{\\\\textrm{End}}}(E) \\\\oplus T^{1,0}X\\\\)</span>, where <span>\\\\(E\\\\rightarrow X\\\\)</span> is the classical gauge bundle arising in the system. We establish that the moduli space has an expected dimension of zero. We achieve this by studying the deformation complex associated to a differential operator <span>\\\\(\\\\bar{D}\\\\)</span>, which emulates a holomorphic structure on <i>Q</i>, and demonstrating an isomorphism between the two cohomology groups which govern the infinitesimal deformations and obstructions in the deformation theory for the system. We also provide a Dolbeault-type theorem linking these cohomology groups to Čech cohomology, a result which might be of independent interest, as well as potentially valuable for future research.</p></div>\",\"PeriodicalId\":522,\"journal\":{\"name\":\"Communications in Mathematical Physics\",\"volume\":\"406 8\",\"pages\":\"\"},\"PeriodicalIF\":2.6000,\"publicationDate\":\"2025-07-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://link.springer.com/content/pdf/10.1007/s00220-025-05309-2.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Communications in Mathematical Physics\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s00220-025-05309-2\",\"RegionNum\":1,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"PHYSICS, MATHEMATICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Communications in Mathematical Physics","FirstCategoryId":"101","ListUrlMain":"https://link.springer.com/article/10.1007/s00220-025-05309-2","RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHYSICS, MATHEMATICAL","Score":null,"Total":0}
引用次数: 0

摘要

异质\(\textrm{SU}(3)\)系统,也被称为赫尔-施特罗明格系统,产生于异质弦理论的紧化到六维。本文利用一个向量束\(Q=(T^{1,0}X)^* \oplus {{\textrm{End}}}(E) \oplus T^{1,0}X\)研究了紧化6流形X上该系统解的模空间的局部结构,其中\(E\rightarrow X\)是系统中产生的经典规范束。我们建立了模空间的期望维数为零。我们通过研究与微分算子\(\bar{D}\)相关的变形复合体来实现这一点,该算子模拟了Q上的全纯结构,并证明了控制系统变形理论中无穷小变形和障碍物的两个上同构群之间的同构。我们还提供了一个Dolbeault-type定理,将这些上同群与Čech上同联系起来,这一结果可能是独立的兴趣,也可能对未来的研究有潜在的价值。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Local Descriptions of the Heterotic SU(3) Moduli Space

The heterotic \(\textrm{SU}(3)\) system, also known as the Hull–Strominger system, arises from compactifications of heterotic string theory to six dimensions. This paper investigates the local structure of the moduli space of solutions to this system on a compact 6-manifold X, using a vector bundle \(Q=(T^{1,0}X)^* \oplus {{\textrm{End}}}(E) \oplus T^{1,0}X\), where \(E\rightarrow X\) is the classical gauge bundle arising in the system. We establish that the moduli space has an expected dimension of zero. We achieve this by studying the deformation complex associated to a differential operator \(\bar{D}\), which emulates a holomorphic structure on Q, and demonstrating an isomorphism between the two cohomology groups which govern the infinitesimal deformations and obstructions in the deformation theory for the system. We also provide a Dolbeault-type theorem linking these cohomology groups to Čech cohomology, a result which might be of independent interest, as well as potentially valuable for future research.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Communications in Mathematical Physics
Communications in Mathematical Physics 物理-物理:数学物理
CiteScore
4.70
自引率
8.30%
发文量
226
审稿时长
3-6 weeks
期刊介绍: The mission of Communications in Mathematical Physics is to offer a high forum for works which are motivated by the vision and the challenges of modern physics and which at the same time meet the highest mathematical standards.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信