基于学习标准原型的记忆增强自编码器验证地铁室内空气质量数据

IF 3.2 4区 工程技术 Q2 CHEMISTRY, MULTIDISCIPLINARY
Vahid Ghorbani, Shahzeb Tariq, ChangKyoo Yoo
{"title":"基于学习标准原型的记忆增强自编码器验证地铁室内空气质量数据","authors":"Vahid Ghorbani,&nbsp;Shahzeb Tariq,&nbsp;ChangKyoo Yoo","doi":"10.1007/s11814-025-00451-y","DOIUrl":null,"url":null,"abstract":"<div><p>Indoor air quality (IAQ) monitoring in subway stations depends on sensors prone to failures due to confined spaces, cyberattacks, and prolonged use. Soft sensor validation frameworks using statistical or machine learning models can detect, diagnose, and reconstruct faulty data but struggle with complex fault patterns. This study introduces a memory-augmented autoencoder-based framework for reliable IAQ sensor validation, leveraging memorized normal prototypes. To the best of our knowledge, this is the first validation method that utilizes normal prototypes for reconciling corrupted measurements. Tested on real IAQ data from Seoul Metro's C-station, the method achieved a 97.03% detection rate, a 4.33% false alarm rate, and demonstrated potential for 10.25% energy savings while maintaining healthy IAQ.</p></div>","PeriodicalId":684,"journal":{"name":"Korean Journal of Chemical Engineering","volume":"42 10","pages":"2231 - 2252"},"PeriodicalIF":3.2000,"publicationDate":"2025-04-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Validation of Subway Indoor Air Quality (IAQ) Data Using Memory-Augmented Autoencoders with Learned Normal Prototypes\",\"authors\":\"Vahid Ghorbani,&nbsp;Shahzeb Tariq,&nbsp;ChangKyoo Yoo\",\"doi\":\"10.1007/s11814-025-00451-y\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Indoor air quality (IAQ) monitoring in subway stations depends on sensors prone to failures due to confined spaces, cyberattacks, and prolonged use. Soft sensor validation frameworks using statistical or machine learning models can detect, diagnose, and reconstruct faulty data but struggle with complex fault patterns. This study introduces a memory-augmented autoencoder-based framework for reliable IAQ sensor validation, leveraging memorized normal prototypes. To the best of our knowledge, this is the first validation method that utilizes normal prototypes for reconciling corrupted measurements. Tested on real IAQ data from Seoul Metro's C-station, the method achieved a 97.03% detection rate, a 4.33% false alarm rate, and demonstrated potential for 10.25% energy savings while maintaining healthy IAQ.</p></div>\",\"PeriodicalId\":684,\"journal\":{\"name\":\"Korean Journal of Chemical Engineering\",\"volume\":\"42 10\",\"pages\":\"2231 - 2252\"},\"PeriodicalIF\":3.2000,\"publicationDate\":\"2025-04-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Korean Journal of Chemical Engineering\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s11814-025-00451-y\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Korean Journal of Chemical Engineering","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s11814-025-00451-y","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

地铁站的室内空气质量(IAQ)监测依赖于传感器,由于空间受限、网络攻击和长时间使用,传感器容易出现故障。使用统计或机器学习模型的软传感器验证框架可以检测、诊断和重建错误数据,但难以处理复杂的故障模式。本研究引入了一个基于记忆增强自编码器的框架,用于可靠的室内空气质量传感器验证,利用记忆的正常原型。据我们所知,这是第一个利用正常原型来协调损坏测量的验证方法。通过对首尔地铁c站真实室内空气质量数据的测试,该方法实现了97.03%的检测率和4.33%的误报率,在保持健康室内空气质量的同时,显示出了10.25%的节能潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Validation of Subway Indoor Air Quality (IAQ) Data Using Memory-Augmented Autoencoders with Learned Normal Prototypes

Indoor air quality (IAQ) monitoring in subway stations depends on sensors prone to failures due to confined spaces, cyberattacks, and prolonged use. Soft sensor validation frameworks using statistical or machine learning models can detect, diagnose, and reconstruct faulty data but struggle with complex fault patterns. This study introduces a memory-augmented autoencoder-based framework for reliable IAQ sensor validation, leveraging memorized normal prototypes. To the best of our knowledge, this is the first validation method that utilizes normal prototypes for reconciling corrupted measurements. Tested on real IAQ data from Seoul Metro's C-station, the method achieved a 97.03% detection rate, a 4.33% false alarm rate, and demonstrated potential for 10.25% energy savings while maintaining healthy IAQ.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Korean Journal of Chemical Engineering
Korean Journal of Chemical Engineering 工程技术-工程:化工
CiteScore
4.60
自引率
11.10%
发文量
310
审稿时长
4.7 months
期刊介绍: The Korean Journal of Chemical Engineering provides a global forum for the dissemination of research in chemical engineering. The Journal publishes significant research results obtained in the Asia-Pacific region, and simultaneously introduces recent technical progress made in other areas of the world to this region. Submitted research papers must be of potential industrial significance and specifically concerned with chemical engineering. The editors will give preference to papers having a clearly stated practical scope and applicability in the areas of chemical engineering, and to those where new theoretical concepts are supported by new experimental details. The Journal also regularly publishes featured reviews on emerging and industrially important subjects of chemical engineering as well as selected papers presented at international conferences on the subjects.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信