具有动态种群划分和混合策略的多群体元启发式优化:算法与应用

IF 5.8 3区 计算机科学 Q1 ENGINEERING, MULTIDISCIPLINARY
Dongshuai Niu, Guangwen Yi, Long Chen, Zhenzhou Tang
{"title":"具有动态种群划分和混合策略的多群体元启发式优化:算法与应用","authors":"Dongshuai Niu,&nbsp;Guangwen Yi,&nbsp;Long Chen,&nbsp;Zhenzhou Tang","doi":"10.1007/s42235-025-00675-y","DOIUrl":null,"url":null,"abstract":"<div><p>To further improve upon the deficiencies of traditional algorithms in terms of population diversity, convergence accuracy, and speed, this paper introduces a Dynamic Multi-Population Hybrid Metaheuristic Algorithm (DHA). DHA dynamically categorizes the population into Elite, Follower, and Explorer subgroups, applying specific strategies: a novel dimension-wise Gaussian mutation combined with the Sine Cosine Algorithm (SCA) for the Elite, a randomized spiral search for the Explorer, and Lévy flight for the Follower. Rigorous testing on benchmark sets like CEC2005, CEC2017, and CEC2019, alongside practical application in Service Function Chain (SFC) mapping, underscores DHA’s superior performance and applicability.</p></div>","PeriodicalId":614,"journal":{"name":"Journal of Bionic Engineering","volume":"22 3","pages":"1459 - 1483"},"PeriodicalIF":5.8000,"publicationDate":"2025-04-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Multi-group Meta-heuristic Optimization with Dynamic Population Partition and Hybrid Strategies: Algorithm and Applications\",\"authors\":\"Dongshuai Niu,&nbsp;Guangwen Yi,&nbsp;Long Chen,&nbsp;Zhenzhou Tang\",\"doi\":\"10.1007/s42235-025-00675-y\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>To further improve upon the deficiencies of traditional algorithms in terms of population diversity, convergence accuracy, and speed, this paper introduces a Dynamic Multi-Population Hybrid Metaheuristic Algorithm (DHA). DHA dynamically categorizes the population into Elite, Follower, and Explorer subgroups, applying specific strategies: a novel dimension-wise Gaussian mutation combined with the Sine Cosine Algorithm (SCA) for the Elite, a randomized spiral search for the Explorer, and Lévy flight for the Follower. Rigorous testing on benchmark sets like CEC2005, CEC2017, and CEC2019, alongside practical application in Service Function Chain (SFC) mapping, underscores DHA’s superior performance and applicability.</p></div>\",\"PeriodicalId\":614,\"journal\":{\"name\":\"Journal of Bionic Engineering\",\"volume\":\"22 3\",\"pages\":\"1459 - 1483\"},\"PeriodicalIF\":5.8000,\"publicationDate\":\"2025-04-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Bionic Engineering\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s42235-025-00675-y\",\"RegionNum\":3,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Bionic Engineering","FirstCategoryId":"94","ListUrlMain":"https://link.springer.com/article/10.1007/s42235-025-00675-y","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

为了进一步改进传统算法在种群多样性、收敛精度和速度等方面的不足,本文提出了一种动态多种群混合元启发式算法(DHA)。DHA动态地将种群划分为精英、追随者和探索者子群体,并应用特定的策略:针对精英群体采用一种新的维度高斯突变与正弦余弦算法(SCA)相结合的方法,针对探索者群体采用随机螺旋搜索,针对追随者群体采用lsm飞行。在CEC2005、CEC2017和CEC2019等基准集上的严格测试,以及在业务功能链(SFC)映射中的实际应用,凸显了DHA的卓越性能和适用性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

A Multi-group Meta-heuristic Optimization with Dynamic Population Partition and Hybrid Strategies: Algorithm and Applications

A Multi-group Meta-heuristic Optimization with Dynamic Population Partition and Hybrid Strategies: Algorithm and Applications

To further improve upon the deficiencies of traditional algorithms in terms of population diversity, convergence accuracy, and speed, this paper introduces a Dynamic Multi-Population Hybrid Metaheuristic Algorithm (DHA). DHA dynamically categorizes the population into Elite, Follower, and Explorer subgroups, applying specific strategies: a novel dimension-wise Gaussian mutation combined with the Sine Cosine Algorithm (SCA) for the Elite, a randomized spiral search for the Explorer, and Lévy flight for the Follower. Rigorous testing on benchmark sets like CEC2005, CEC2017, and CEC2019, alongside practical application in Service Function Chain (SFC) mapping, underscores DHA’s superior performance and applicability.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Bionic Engineering
Journal of Bionic Engineering 工程技术-材料科学:生物材料
CiteScore
7.10
自引率
10.00%
发文量
162
审稿时长
10.0 months
期刊介绍: The Journal of Bionic Engineering (JBE) is a peer-reviewed journal that publishes original research papers and reviews that apply the knowledge learned from nature and biological systems to solve concrete engineering problems. The topics that JBE covers include but are not limited to: Mechanisms, kinematical mechanics and control of animal locomotion, development of mobile robots with walking (running and crawling), swimming or flying abilities inspired by animal locomotion. Structures, morphologies, composition and physical properties of natural and biomaterials; fabrication of new materials mimicking the properties and functions of natural and biomaterials. Biomedical materials, artificial organs and tissue engineering for medical applications; rehabilitation equipment and devices. Development of bioinspired computation methods and artificial intelligence for engineering applications.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信