具有局域化特征的量子Tsallis熵

IF 1.7 4区 物理与天体物理 Q3 PHYSICS, MULTIDISCIPLINARY
Qi Han, Shuai Wang, Lijie Gou, Rong Zhang
{"title":"具有局域化特征的量子Tsallis熵","authors":"Qi Han,&nbsp;Shuai Wang,&nbsp;Lijie Gou,&nbsp;Rong Zhang","doi":"10.1007/s10773-025-06070-x","DOIUrl":null,"url":null,"abstract":"<div><p>This paper introduces a new of quantum Tsallis entropy with localized characteristics. Specifically, we define and characterize a localized quantum Tsallis entropy using the local density operator constructed based on Local Quantum Bernoulli Noises (LQBNs). We also present some important properties of this entropy, including non-negativity, upper bound, unitarity invariance, and concavity. Notably, we find that local quantum Tsallis entropy does not satisfy additivity in general cases. However, under specific parameter conditions, namely when <span>\\(q&gt;1\\)</span>, it exhibits the property of subadditivity. The local quantum Tsallis entropy introduced in this paper not only enriches the theoretical framework of quantum entropy but also provides a powerful tool for describing the complexity of quantum states and understanding information transmission and distribution within quantum systems.</p></div>","PeriodicalId":597,"journal":{"name":"International Journal of Theoretical Physics","volume":"64 8","pages":""},"PeriodicalIF":1.7000,"publicationDate":"2025-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Quantum Tsallis Entropy with Localization Characteristics\",\"authors\":\"Qi Han,&nbsp;Shuai Wang,&nbsp;Lijie Gou,&nbsp;Rong Zhang\",\"doi\":\"10.1007/s10773-025-06070-x\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>This paper introduces a new of quantum Tsallis entropy with localized characteristics. Specifically, we define and characterize a localized quantum Tsallis entropy using the local density operator constructed based on Local Quantum Bernoulli Noises (LQBNs). We also present some important properties of this entropy, including non-negativity, upper bound, unitarity invariance, and concavity. Notably, we find that local quantum Tsallis entropy does not satisfy additivity in general cases. However, under specific parameter conditions, namely when <span>\\\\(q&gt;1\\\\)</span>, it exhibits the property of subadditivity. The local quantum Tsallis entropy introduced in this paper not only enriches the theoretical framework of quantum entropy but also provides a powerful tool for describing the complexity of quantum states and understanding information transmission and distribution within quantum systems.</p></div>\",\"PeriodicalId\":597,\"journal\":{\"name\":\"International Journal of Theoretical Physics\",\"volume\":\"64 8\",\"pages\":\"\"},\"PeriodicalIF\":1.7000,\"publicationDate\":\"2025-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Theoretical Physics\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10773-025-06070-x\",\"RegionNum\":4,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"PHYSICS, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Theoretical Physics","FirstCategoryId":"101","ListUrlMain":"https://link.springer.com/article/10.1007/s10773-025-06070-x","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

本文介绍了一种新的具有局域特征的量子Tsallis熵。具体来说,我们使用基于局部量子伯努利噪声(LQBNs)构造的局部密度算子来定义和表征局域量子Tsallis熵。我们还给出了该熵的一些重要性质,包括非负性、上界、一致不变性和凹性。值得注意的是,我们发现局部量子Tsallis熵在一般情况下不满足可加性。但是,在特定的参数条件下,即\(q>1\)时,它表现出子可加性。本文引入的局域量子Tsallis熵不仅丰富了量子熵的理论框架,而且为描述量子态的复杂性和理解量子系统内信息的传输和分布提供了有力的工具。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Quantum Tsallis Entropy with Localization Characteristics

This paper introduces a new of quantum Tsallis entropy with localized characteristics. Specifically, we define and characterize a localized quantum Tsallis entropy using the local density operator constructed based on Local Quantum Bernoulli Noises (LQBNs). We also present some important properties of this entropy, including non-negativity, upper bound, unitarity invariance, and concavity. Notably, we find that local quantum Tsallis entropy does not satisfy additivity in general cases. However, under specific parameter conditions, namely when \(q>1\), it exhibits the property of subadditivity. The local quantum Tsallis entropy introduced in this paper not only enriches the theoretical framework of quantum entropy but also provides a powerful tool for describing the complexity of quantum states and understanding information transmission and distribution within quantum systems.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
2.50
自引率
21.40%
发文量
258
审稿时长
3.3 months
期刊介绍: International Journal of Theoretical Physics publishes original research and reviews in theoretical physics and neighboring fields. Dedicated to the unification of the latest physics research, this journal seeks to map the direction of future research by original work in traditional physics like general relativity, quantum theory with relativistic quantum field theory,as used in particle physics, and by fresh inquiry into quantum measurement theory, and other similarly fundamental areas, e.g. quantum geometry and quantum logic, etc.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信