库埃特流的边界驱动不稳定性

IF 2.6 1区 物理与天体物理 Q1 PHYSICS, MATHEMATICAL
Dongfen Bian, Emmanuel Grenier, Nader Masmoudi, Weiren Zhao
{"title":"库埃特流的边界驱动不稳定性","authors":"Dongfen Bian,&nbsp;Emmanuel Grenier,&nbsp;Nader Masmoudi,&nbsp;Weiren Zhao","doi":"10.1007/s00220-025-05401-7","DOIUrl":null,"url":null,"abstract":"<div><p>In this article, we prove that the threshold of instability of the classical Couette flow in <span>\\(H^s\\)</span> for large <i>s</i> is <span>\\(\\nu ^{1/2}\\)</span>. The instability is completely driven by the boundary. The dynamic of the flow creates a Prandtl type boundary layer of width <span>\\(\\nu ^{1/2}\\)</span> which is itself linearly unstable. This leads to a secondary instability which in turn creates a sub-layer.</p></div>","PeriodicalId":522,"journal":{"name":"Communications in Mathematical Physics","volume":"406 9","pages":""},"PeriodicalIF":2.6000,"publicationDate":"2025-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Boundary Driven Instabilities of Couette Flows\",\"authors\":\"Dongfen Bian,&nbsp;Emmanuel Grenier,&nbsp;Nader Masmoudi,&nbsp;Weiren Zhao\",\"doi\":\"10.1007/s00220-025-05401-7\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>In this article, we prove that the threshold of instability of the classical Couette flow in <span>\\\\(H^s\\\\)</span> for large <i>s</i> is <span>\\\\(\\\\nu ^{1/2}\\\\)</span>. The instability is completely driven by the boundary. The dynamic of the flow creates a Prandtl type boundary layer of width <span>\\\\(\\\\nu ^{1/2}\\\\)</span> which is itself linearly unstable. This leads to a secondary instability which in turn creates a sub-layer.</p></div>\",\"PeriodicalId\":522,\"journal\":{\"name\":\"Communications in Mathematical Physics\",\"volume\":\"406 9\",\"pages\":\"\"},\"PeriodicalIF\":2.6000,\"publicationDate\":\"2025-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Communications in Mathematical Physics\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s00220-025-05401-7\",\"RegionNum\":1,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"PHYSICS, MATHEMATICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Communications in Mathematical Physics","FirstCategoryId":"101","ListUrlMain":"https://link.springer.com/article/10.1007/s00220-025-05401-7","RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHYSICS, MATHEMATICAL","Score":null,"Total":0}
引用次数: 0

摘要

在本文中,我们证明了在\(H^s\)中,大s的经典Couette流的不稳定阈值为\(\nu ^{1/2}\)。不稳定性完全是由边界驱动的。流动的动态产生了宽度为\(\nu ^{1/2}\)的普朗特型边界层,其本身是线性不稳定的。这导致了次级不稳定性,而次级不稳定性又产生了子层。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Boundary Driven Instabilities of Couette Flows

In this article, we prove that the threshold of instability of the classical Couette flow in \(H^s\) for large s is \(\nu ^{1/2}\). The instability is completely driven by the boundary. The dynamic of the flow creates a Prandtl type boundary layer of width \(\nu ^{1/2}\) which is itself linearly unstable. This leads to a secondary instability which in turn creates a sub-layer.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Communications in Mathematical Physics
Communications in Mathematical Physics 物理-物理:数学物理
CiteScore
4.70
自引率
8.30%
发文量
226
审稿时长
3-6 weeks
期刊介绍: The mission of Communications in Mathematical Physics is to offer a high forum for works which are motivated by the vision and the challenges of modern physics and which at the same time meet the highest mathematical standards.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信