纳米晶Ni0.9−xZn0.1CoxFe2O4铁氧体中钴浓度相关的结构和磁跃迁

IF 1.4 3区 物理与天体物理 Q4 PHYSICS, APPLIED
K. K. Palsaniya,  Anchal,  Sarita, M. S. Rulaniya, Pooja Yadav, R. K. Beniwal, Namita Kumari, P. A. Alvi, B. L. Choudhary
{"title":"纳米晶Ni0.9−xZn0.1CoxFe2O4铁氧体中钴浓度相关的结构和磁跃迁","authors":"K. K. Palsaniya,&nbsp; Anchal,&nbsp; Sarita,&nbsp;M. S. Rulaniya,&nbsp;Pooja Yadav,&nbsp;R. K. Beniwal,&nbsp;Namita Kumari,&nbsp;P. A. Alvi,&nbsp;B. L. Choudhary","doi":"10.1007/s10909-025-03299-y","DOIUrl":null,"url":null,"abstract":"<div><p>Nanocrystalline Ni<sub>0.9−<i>x</i></sub>Zn<sub>0.1</sub>Co<sub><i>x</i></sub>Fe<sub>2</sub>O<sub>4</sub> (<i>x</i> = 0.2, 0.4, 0.6, 0.8) ferrites were synthesized via the sol–gel method, yielding a cubic single-phase spinel structure (Fd−3m), as confirmed through Rietveld refinement. The crystallite size was observed to increase from 7 to 10 nm with higher Co substitution. Magnetic characterization revealed a pronounced dependence on Co concentration, with zero-field-cooled and field-cooled magnetization curves exhibiting bifurcation indicative of magnetic relaxation phenomena. The Ni<sub>0.5</sub>Zn<sub>0.1</sub>Co<sub>0.4</sub>Fe<sub>2</sub>O<sub>4</sub> composition exhibited a blocking temperature of 191 K, a Curie temperature of 207 K, and a transition from ferromagnetic ordering at 5 K to superparamagnetic behavior at 300 K. Similarly, Ni<sub>0.3</sub>Zn<sub>0.1</sub>Co<sub>0.6</sub>Fe<sub>2</sub>O<sub>4</sub> demonstrated a transition at 251 K with retained ferromagnetic ordering at 5 K. In contrast, Ni<sub>0.1</sub>Zn<sub>0.1</sub>Co<sub>0.8</sub>Fe<sub>2</sub>O<sub>4</sub> displayed magnetic irreversibility and a paramagnetic state at 300 K. Raman spectroscopy further corroborated the inverse spinel structure, revealing characteristic vibrational modes at ~ 460 cm⁻<sup>1</sup> and 680 cm⁻<sup>1</sup>. These findings underscore the pivotal role of Co substitution in modulating the structural and magnetic properties of Ni<sub>0.9−<i>x</i></sub>Zn<sub>0.1</sub>Co<sub><i>x</i></sub>Fe<sub>2</sub>O<sub>4</sub> nanocrystals, particularly their temperature-dependent magnetic phase transitions. Collectively, the results highlight the influence of Co concentration on the structural and magnetic properties of Ni<sub>0.9−<i>x</i></sub>Zn<sub>0.1</sub>Co<sub><i>x</i></sub>Fe<sub>2</sub>O<sub>4</sub> nanocrystals, particularly their temperature-dependent magnetic transitions.</p></div>","PeriodicalId":641,"journal":{"name":"Journal of Low Temperature Physics","volume":"220 3-6","pages":"192 - 209"},"PeriodicalIF":1.4000,"publicationDate":"2025-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Cobalt Concentration-Dependent Structural and Magnetic Transitions in Nanocrystalline Ni0.9−xZn0.1CoxFe2O4 Ferrites\",\"authors\":\"K. K. Palsaniya,&nbsp; Anchal,&nbsp; Sarita,&nbsp;M. S. Rulaniya,&nbsp;Pooja Yadav,&nbsp;R. K. Beniwal,&nbsp;Namita Kumari,&nbsp;P. A. Alvi,&nbsp;B. L. Choudhary\",\"doi\":\"10.1007/s10909-025-03299-y\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Nanocrystalline Ni<sub>0.9−<i>x</i></sub>Zn<sub>0.1</sub>Co<sub><i>x</i></sub>Fe<sub>2</sub>O<sub>4</sub> (<i>x</i> = 0.2, 0.4, 0.6, 0.8) ferrites were synthesized via the sol–gel method, yielding a cubic single-phase spinel structure (Fd−3m), as confirmed through Rietveld refinement. The crystallite size was observed to increase from 7 to 10 nm with higher Co substitution. Magnetic characterization revealed a pronounced dependence on Co concentration, with zero-field-cooled and field-cooled magnetization curves exhibiting bifurcation indicative of magnetic relaxation phenomena. The Ni<sub>0.5</sub>Zn<sub>0.1</sub>Co<sub>0.4</sub>Fe<sub>2</sub>O<sub>4</sub> composition exhibited a blocking temperature of 191 K, a Curie temperature of 207 K, and a transition from ferromagnetic ordering at 5 K to superparamagnetic behavior at 300 K. Similarly, Ni<sub>0.3</sub>Zn<sub>0.1</sub>Co<sub>0.6</sub>Fe<sub>2</sub>O<sub>4</sub> demonstrated a transition at 251 K with retained ferromagnetic ordering at 5 K. In contrast, Ni<sub>0.1</sub>Zn<sub>0.1</sub>Co<sub>0.8</sub>Fe<sub>2</sub>O<sub>4</sub> displayed magnetic irreversibility and a paramagnetic state at 300 K. Raman spectroscopy further corroborated the inverse spinel structure, revealing characteristic vibrational modes at ~ 460 cm⁻<sup>1</sup> and 680 cm⁻<sup>1</sup>. These findings underscore the pivotal role of Co substitution in modulating the structural and magnetic properties of Ni<sub>0.9−<i>x</i></sub>Zn<sub>0.1</sub>Co<sub><i>x</i></sub>Fe<sub>2</sub>O<sub>4</sub> nanocrystals, particularly their temperature-dependent magnetic phase transitions. Collectively, the results highlight the influence of Co concentration on the structural and magnetic properties of Ni<sub>0.9−<i>x</i></sub>Zn<sub>0.1</sub>Co<sub><i>x</i></sub>Fe<sub>2</sub>O<sub>4</sub> nanocrystals, particularly their temperature-dependent magnetic transitions.</p></div>\",\"PeriodicalId\":641,\"journal\":{\"name\":\"Journal of Low Temperature Physics\",\"volume\":\"220 3-6\",\"pages\":\"192 - 209\"},\"PeriodicalIF\":1.4000,\"publicationDate\":\"2025-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Low Temperature Physics\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10909-025-03299-y\",\"RegionNum\":3,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"PHYSICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Low Temperature Physics","FirstCategoryId":"101","ListUrlMain":"https://link.springer.com/article/10.1007/s10909-025-03299-y","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"PHYSICS, APPLIED","Score":null,"Total":0}
引用次数: 0

摘要

采用溶胶-凝胶法合成了纳米晶Ni0.9−xZn0.1CoxFe2O4 (x = 0.2, 0.4, 0.6, 0.8)铁氧体,经Rietveld细化证实为立方单相尖晶石结构(Fd−3m)。随着Co取代量的增加,晶体尺寸从7 nm增加到10 nm。磁性表征显示了Co浓度的显著依赖性,零场冷却和场冷却磁化曲线出现分叉,表明存在磁弛豫现象。Ni0.5Zn0.1Co0.4Fe2O4的阻滞温度为191 K,居里温度为207 K,在5 K时从铁磁有序转变为300 K时的超顺磁行为。同样,Ni0.3Zn0.1Co0.6Fe2O4在251 K时发生转变,在5 K时保持铁磁有序。相比之下,Ni0.1Zn0.1Co0.8Fe2O4在300 K时表现出磁不可逆性和顺磁性。拉曼光谱进一步证实了尖晶石的反向结构,揭示了~ 460 cm - 1和680 cm - 1的特征振动模式。这些发现强调了Co取代在调节Ni0.9−xZn0.1CoxFe2O4纳米晶体的结构和磁性方面的关键作用,特别是它们的温度依赖的磁相变。总的来说,这些结果突出了Co浓度对Ni0.9−xZn0.1CoxFe2O4纳米晶体结构和磁性能的影响,特别是它们的温度依赖性磁跃迁。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Cobalt Concentration-Dependent Structural and Magnetic Transitions in Nanocrystalline Ni0.9−xZn0.1CoxFe2O4 Ferrites

Nanocrystalline Ni0.9−xZn0.1CoxFe2O4 (x = 0.2, 0.4, 0.6, 0.8) ferrites were synthesized via the sol–gel method, yielding a cubic single-phase spinel structure (Fd−3m), as confirmed through Rietveld refinement. The crystallite size was observed to increase from 7 to 10 nm with higher Co substitution. Magnetic characterization revealed a pronounced dependence on Co concentration, with zero-field-cooled and field-cooled magnetization curves exhibiting bifurcation indicative of magnetic relaxation phenomena. The Ni0.5Zn0.1Co0.4Fe2O4 composition exhibited a blocking temperature of 191 K, a Curie temperature of 207 K, and a transition from ferromagnetic ordering at 5 K to superparamagnetic behavior at 300 K. Similarly, Ni0.3Zn0.1Co0.6Fe2O4 demonstrated a transition at 251 K with retained ferromagnetic ordering at 5 K. In contrast, Ni0.1Zn0.1Co0.8Fe2O4 displayed magnetic irreversibility and a paramagnetic state at 300 K. Raman spectroscopy further corroborated the inverse spinel structure, revealing characteristic vibrational modes at ~ 460 cm⁻1 and 680 cm⁻1. These findings underscore the pivotal role of Co substitution in modulating the structural and magnetic properties of Ni0.9−xZn0.1CoxFe2O4 nanocrystals, particularly their temperature-dependent magnetic phase transitions. Collectively, the results highlight the influence of Co concentration on the structural and magnetic properties of Ni0.9−xZn0.1CoxFe2O4 nanocrystals, particularly their temperature-dependent magnetic transitions.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Low Temperature Physics
Journal of Low Temperature Physics 物理-物理:凝聚态物理
CiteScore
3.30
自引率
25.00%
发文量
245
审稿时长
1 months
期刊介绍: The Journal of Low Temperature Physics publishes original papers and review articles on all areas of low temperature physics and cryogenics, including theoretical and experimental contributions. Subject areas include: Quantum solids, liquids and gases; Superfluidity; Superconductivity; Condensed matter physics; Experimental techniques; The Journal encourages the submission of Rapid Communications and Special Issues.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信