交替蛇模和行列式公式

IF 2.6 1区 物理与天体物理 Q1 PHYSICS, MATHEMATICAL
Matheus Brito, Vyjayanthi Chari
{"title":"交替蛇模和行列式公式","authors":"Matheus Brito,&nbsp;Vyjayanthi Chari","doi":"10.1007/s00220-025-05407-1","DOIUrl":null,"url":null,"abstract":"<div><p>We introduce a family of modules for the quantum affine algebra which include as very special cases both the snake modules and modules arising from a monoidal categorification of cluster algebras. We give necessary and sufficient conditions for these modules to be prime and prove a unique factorization result. We also give an explicit formula expressing the module as an alternating sum of Weyl modules. Finally, we give an application of our results to a classical question in the category <span>\\(\\mathcal O(\\mathfrak {gl}_r)\\)</span>. Specifically we apply our results to show that there are a large family of non-regular, non-dominant weights <span>\\(\\mu \\)</span> for which the non-zero Kazhdan–Lusztig coefficients <span>\\(c_{\\mu , \\nu }\\)</span> are <span>\\(\\pm 1\\)</span>.</p></div>","PeriodicalId":522,"journal":{"name":"Communications in Mathematical Physics","volume":"406 9","pages":""},"PeriodicalIF":2.6000,"publicationDate":"2025-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Alternating Snake Modules and a Determinantal Formula\",\"authors\":\"Matheus Brito,&nbsp;Vyjayanthi Chari\",\"doi\":\"10.1007/s00220-025-05407-1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>We introduce a family of modules for the quantum affine algebra which include as very special cases both the snake modules and modules arising from a monoidal categorification of cluster algebras. We give necessary and sufficient conditions for these modules to be prime and prove a unique factorization result. We also give an explicit formula expressing the module as an alternating sum of Weyl modules. Finally, we give an application of our results to a classical question in the category <span>\\\\(\\\\mathcal O(\\\\mathfrak {gl}_r)\\\\)</span>. Specifically we apply our results to show that there are a large family of non-regular, non-dominant weights <span>\\\\(\\\\mu \\\\)</span> for which the non-zero Kazhdan–Lusztig coefficients <span>\\\\(c_{\\\\mu , \\\\nu }\\\\)</span> are <span>\\\\(\\\\pm 1\\\\)</span>.</p></div>\",\"PeriodicalId\":522,\"journal\":{\"name\":\"Communications in Mathematical Physics\",\"volume\":\"406 9\",\"pages\":\"\"},\"PeriodicalIF\":2.6000,\"publicationDate\":\"2025-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Communications in Mathematical Physics\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s00220-025-05407-1\",\"RegionNum\":1,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"PHYSICS, MATHEMATICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Communications in Mathematical Physics","FirstCategoryId":"101","ListUrlMain":"https://link.springer.com/article/10.1007/s00220-025-05407-1","RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHYSICS, MATHEMATICAL","Score":null,"Total":0}
引用次数: 0

摘要

我们为量子仿射代数引入了一组模,作为非常特殊的情况,它们包括蛇模和由簇代数的一元范畴产生的模。给出了这些模为素数的充分必要条件,并证明了一个唯一的分解结果。我们还给出了一个显式公式,将该模块表示为Weyl模块的交替和。最后,我们将我们的结果应用于\(\mathcal O(\mathfrak {gl}_r)\)类别中的一个经典问题。具体地说,我们应用我们的结果来证明存在一个大族的非规则的、非显性的权重\(\mu \),其中Kazhdan-Lusztig系数\(c_{\mu , \nu }\)为\(\pm 1\)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Alternating Snake Modules and a Determinantal Formula

We introduce a family of modules for the quantum affine algebra which include as very special cases both the snake modules and modules arising from a monoidal categorification of cluster algebras. We give necessary and sufficient conditions for these modules to be prime and prove a unique factorization result. We also give an explicit formula expressing the module as an alternating sum of Weyl modules. Finally, we give an application of our results to a classical question in the category \(\mathcal O(\mathfrak {gl}_r)\). Specifically we apply our results to show that there are a large family of non-regular, non-dominant weights \(\mu \) for which the non-zero Kazhdan–Lusztig coefficients \(c_{\mu , \nu }\) are \(\pm 1\).

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Communications in Mathematical Physics
Communications in Mathematical Physics 物理-物理:数学物理
CiteScore
4.70
自引率
8.30%
发文量
226
审稿时长
3-6 weeks
期刊介绍: The mission of Communications in Mathematical Physics is to offer a high forum for works which are motivated by the vision and the challenges of modern physics and which at the same time meet the highest mathematical standards.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信