关于\(\textrm{Sp}(n)\) -瞬子和复拉格朗日量的傅里叶- mukai变换

IF 2.6 1区 物理与天体物理 Q1 PHYSICS, MATHEMATICAL
Jesse Madnick, Emily Autumn Windes
{"title":"关于\\(\\textrm{Sp}(n)\\) -瞬子和复拉格朗日量的傅里叶- mukai变换","authors":"Jesse Madnick,&nbsp;Emily Autumn Windes","doi":"10.1007/s00220-025-05389-0","DOIUrl":null,"url":null,"abstract":"<div><p>The real Fourier–Mukai (RFM) transform relates calibrated graphs to so-called “deformed instantons” on Hermitian line bundles. We show that under the RFM transform, complex Lagrangian graphs in <span>\\(\\mathbb {R}^{2n} \\times T^{2n}\\)</span> correspond to <span>\\(\\textrm{Sp}(n)\\)</span>-instantons over <span>\\(\\mathbb {R}^{2n} \\times (T^{2n})^*\\)</span>. In other words, the deformed <span>\\(\\textrm{Sp}(n)\\)</span>-instanton equation coincides with the usual <span>\\(\\textrm{Sp}(n)\\)</span>-instanton equation. Motivated by this observation, we study <span>\\(\\textrm{Sp}(n)\\)</span>-instantons on hyperkähler manifolds <span>\\(X^{4n}\\)</span>, with an emphasis on conical singularities. First, when <span>\\(X = C(M)\\)</span> is a hyperkähler cone, we relate <span>\\(\\textrm{Sp}(n)\\)</span>-instantons on <i>X</i> to tri-contact instantons on the 3-Sasakian link <i>M</i> and consider various dimensional reductions. Second, when <i>X</i> is an asymptotically conical (AC) hyperkähler manifold of rate <span>\\(\\nu \\le -\\frac{2}{3}(2n+1)\\)</span>, we prove a Lewis-type theorem to the following effect: If the set of AC <span>\\(\\textrm{Sp}(n)\\)</span>-instantons is non-empty, then every AC Hermitian Yang–Mills connection over <i>X</i> with sufficiently fast decay at infinity is an <span>\\(\\textrm{Sp}(n)\\)</span>-instanton.\n</p></div>","PeriodicalId":522,"journal":{"name":"Communications in Mathematical Physics","volume":"406 9","pages":""},"PeriodicalIF":2.6000,"publicationDate":"2025-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On \\\\(\\\\textrm{Sp}(n)\\\\)-Instantons and the Fourier–Mukai Transform of Complex Lagrangians\",\"authors\":\"Jesse Madnick,&nbsp;Emily Autumn Windes\",\"doi\":\"10.1007/s00220-025-05389-0\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The real Fourier–Mukai (RFM) transform relates calibrated graphs to so-called “deformed instantons” on Hermitian line bundles. We show that under the RFM transform, complex Lagrangian graphs in <span>\\\\(\\\\mathbb {R}^{2n} \\\\times T^{2n}\\\\)</span> correspond to <span>\\\\(\\\\textrm{Sp}(n)\\\\)</span>-instantons over <span>\\\\(\\\\mathbb {R}^{2n} \\\\times (T^{2n})^*\\\\)</span>. In other words, the deformed <span>\\\\(\\\\textrm{Sp}(n)\\\\)</span>-instanton equation coincides with the usual <span>\\\\(\\\\textrm{Sp}(n)\\\\)</span>-instanton equation. Motivated by this observation, we study <span>\\\\(\\\\textrm{Sp}(n)\\\\)</span>-instantons on hyperkähler manifolds <span>\\\\(X^{4n}\\\\)</span>, with an emphasis on conical singularities. First, when <span>\\\\(X = C(M)\\\\)</span> is a hyperkähler cone, we relate <span>\\\\(\\\\textrm{Sp}(n)\\\\)</span>-instantons on <i>X</i> to tri-contact instantons on the 3-Sasakian link <i>M</i> and consider various dimensional reductions. Second, when <i>X</i> is an asymptotically conical (AC) hyperkähler manifold of rate <span>\\\\(\\\\nu \\\\le -\\\\frac{2}{3}(2n+1)\\\\)</span>, we prove a Lewis-type theorem to the following effect: If the set of AC <span>\\\\(\\\\textrm{Sp}(n)\\\\)</span>-instantons is non-empty, then every AC Hermitian Yang–Mills connection over <i>X</i> with sufficiently fast decay at infinity is an <span>\\\\(\\\\textrm{Sp}(n)\\\\)</span>-instanton.\\n</p></div>\",\"PeriodicalId\":522,\"journal\":{\"name\":\"Communications in Mathematical Physics\",\"volume\":\"406 9\",\"pages\":\"\"},\"PeriodicalIF\":2.6000,\"publicationDate\":\"2025-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Communications in Mathematical Physics\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s00220-025-05389-0\",\"RegionNum\":1,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"PHYSICS, MATHEMATICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Communications in Mathematical Physics","FirstCategoryId":"101","ListUrlMain":"https://link.springer.com/article/10.1007/s00220-025-05389-0","RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHYSICS, MATHEMATICAL","Score":null,"Total":0}
引用次数: 0

摘要

真正的傅立叶-穆凯(RFM)变换将校准图与厄米线束上所谓的“变形瞬子”联系起来。我们证明了在RFM变换下,\(\mathbb {R}^{2n} \times T^{2n}\)中的复拉格朗日图对应于\(\mathbb {R}^{2n} \times (T^{2n})^*\)上的\(\textrm{Sp}(n)\) -瞬子。换句话说,变形的\(\textrm{Sp}(n)\) -instanton方程与通常的\(\textrm{Sp}(n)\) -instanton方程是一致的。受此启发,我们研究了hyperkähler流形\(X^{4n}\)上的\(\textrm{Sp}(n)\) -瞬子,重点研究了圆锥奇点。首先,当\(X = C(M)\)是hyperkähler锥时,我们将X上的\(\textrm{Sp}(n)\) -瞬时子与3-Sasakian连杆M上的三接触瞬时子联系起来,并考虑各种维数缩减。其次,当X是速率为\(\nu \le -\frac{2}{3}(2n+1)\)的渐近圆锥(AC) hyperkähler流形时,我们证明了一个lewis型定理,其结果如下:如果AC \(\textrm{Sp}(n)\) -瞬子集合非空,则X上每一个在无穷远处衰减足够快的AC埃米杨-米尔斯连接都是一个\(\textrm{Sp}(n)\) -瞬子。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
On \(\textrm{Sp}(n)\)-Instantons and the Fourier–Mukai Transform of Complex Lagrangians

The real Fourier–Mukai (RFM) transform relates calibrated graphs to so-called “deformed instantons” on Hermitian line bundles. We show that under the RFM transform, complex Lagrangian graphs in \(\mathbb {R}^{2n} \times T^{2n}\) correspond to \(\textrm{Sp}(n)\)-instantons over \(\mathbb {R}^{2n} \times (T^{2n})^*\). In other words, the deformed \(\textrm{Sp}(n)\)-instanton equation coincides with the usual \(\textrm{Sp}(n)\)-instanton equation. Motivated by this observation, we study \(\textrm{Sp}(n)\)-instantons on hyperkähler manifolds \(X^{4n}\), with an emphasis on conical singularities. First, when \(X = C(M)\) is a hyperkähler cone, we relate \(\textrm{Sp}(n)\)-instantons on X to tri-contact instantons on the 3-Sasakian link M and consider various dimensional reductions. Second, when X is an asymptotically conical (AC) hyperkähler manifold of rate \(\nu \le -\frac{2}{3}(2n+1)\), we prove a Lewis-type theorem to the following effect: If the set of AC \(\textrm{Sp}(n)\)-instantons is non-empty, then every AC Hermitian Yang–Mills connection over X with sufficiently fast decay at infinity is an \(\textrm{Sp}(n)\)-instanton.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Communications in Mathematical Physics
Communications in Mathematical Physics 物理-物理:数学物理
CiteScore
4.70
自引率
8.30%
发文量
226
审稿时长
3-6 weeks
期刊介绍: The mission of Communications in Mathematical Physics is to offer a high forum for works which are motivated by the vision and the challenges of modern physics and which at the same time meet the highest mathematical standards.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信