{"title":"将谱分数阶拉普拉斯算子推广到矩形域上的非齐次边界条件,并应用于具有结构阻尼的板方程的适定性","authors":"Julian Edward","doi":"10.1016/j.jmaa.2025.130073","DOIUrl":null,"url":null,"abstract":"<div><div>Let Δ be the Dirichlet Laplacian on a rectangular domain <span><math><mi>R</mi><mo>⊂</mo><msup><mrow><mi>R</mi></mrow><mrow><mi>N</mi></mrow></msup></math></span>. We study the mapping properties of an extension of the spectral fractional Laplacian, <span><math><msup><mrow><mo>(</mo><mo>−</mo><mi>Δ</mi><mo>)</mo></mrow><mrow><mi>α</mi></mrow></msup></math></span>, for <span><math><mi>α</mi><mo>∈</mo><mo>[</mo><mn>0</mn><mo>,</mo><mn>1</mn><mo>)</mo></math></span>, when applied to functions satisfying non-homogeneous boundary conditions. A symmetry formula is proven. As an application, we prove well-posedness results for the structurally damped plate equation<span><span><span><math><msub><mrow><mi>u</mi></mrow><mrow><mi>t</mi><mi>t</mi></mrow></msub><mo>+</mo><msup><mrow><mi>Δ</mi></mrow><mrow><mn>2</mn></mrow></msup><mi>u</mi><mo>+</mo><mi>ρ</mi><msup><mrow><mo>(</mo><mo>−</mo><mi>Δ</mi><mo>)</mo></mrow><mrow><mi>α</mi></mrow></msup><msub><mrow><mi>u</mi></mrow><mrow><mi>t</mi></mrow></msub><mo>=</mo><mn>0</mn><mo>,</mo><mi>x</mi><mo>∈</mo><mi>R</mi><mo>,</mo><mi>t</mi><mo>></mo><mn>0</mn><mo>,</mo></math></span></span></span> with non-homogeneous boundary conditions<span><span><span><math><mi>u</mi><msub><mrow><mo>|</mo></mrow><mrow><mo>∂</mo><mi>R</mi></mrow></msub><mo>=</mo><mi>f</mi><mo>,</mo><mspace></mspace><mi>Δ</mi><mi>u</mi><msub><mrow><mo>|</mo></mrow><mrow><mo>∂</mo><mi>R</mi></mrow></msub><mo>=</mo><mn>0</mn><mo>,</mo><mspace></mspace><mi>f</mi><mo>∈</mo><msup><mrow><mi>L</mi></mrow><mrow><mn>2</mn></mrow></msup><mo>(</mo><mo>∂</mo><mi>R</mi><mo>×</mo><mo>[</mo><mn>0</mn><mo>,</mo><mo>∞</mo><mo>)</mo><mo>)</mo><mo>.</mo></math></span></span></span> Other non-homogeneous boundary conditions are also considered.</div></div>","PeriodicalId":50147,"journal":{"name":"Journal of Mathematical Analysis and Applications","volume":"556 1","pages":"Article 130073"},"PeriodicalIF":1.2000,"publicationDate":"2025-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"An extension of the spectral fractional Laplacian to non-homogeneous boundary condition on rectangular domains, with application to well-posedness for plate equation with structural damping\",\"authors\":\"Julian Edward\",\"doi\":\"10.1016/j.jmaa.2025.130073\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Let Δ be the Dirichlet Laplacian on a rectangular domain <span><math><mi>R</mi><mo>⊂</mo><msup><mrow><mi>R</mi></mrow><mrow><mi>N</mi></mrow></msup></math></span>. We study the mapping properties of an extension of the spectral fractional Laplacian, <span><math><msup><mrow><mo>(</mo><mo>−</mo><mi>Δ</mi><mo>)</mo></mrow><mrow><mi>α</mi></mrow></msup></math></span>, for <span><math><mi>α</mi><mo>∈</mo><mo>[</mo><mn>0</mn><mo>,</mo><mn>1</mn><mo>)</mo></math></span>, when applied to functions satisfying non-homogeneous boundary conditions. A symmetry formula is proven. As an application, we prove well-posedness results for the structurally damped plate equation<span><span><span><math><msub><mrow><mi>u</mi></mrow><mrow><mi>t</mi><mi>t</mi></mrow></msub><mo>+</mo><msup><mrow><mi>Δ</mi></mrow><mrow><mn>2</mn></mrow></msup><mi>u</mi><mo>+</mo><mi>ρ</mi><msup><mrow><mo>(</mo><mo>−</mo><mi>Δ</mi><mo>)</mo></mrow><mrow><mi>α</mi></mrow></msup><msub><mrow><mi>u</mi></mrow><mrow><mi>t</mi></mrow></msub><mo>=</mo><mn>0</mn><mo>,</mo><mi>x</mi><mo>∈</mo><mi>R</mi><mo>,</mo><mi>t</mi><mo>></mo><mn>0</mn><mo>,</mo></math></span></span></span> with non-homogeneous boundary conditions<span><span><span><math><mi>u</mi><msub><mrow><mo>|</mo></mrow><mrow><mo>∂</mo><mi>R</mi></mrow></msub><mo>=</mo><mi>f</mi><mo>,</mo><mspace></mspace><mi>Δ</mi><mi>u</mi><msub><mrow><mo>|</mo></mrow><mrow><mo>∂</mo><mi>R</mi></mrow></msub><mo>=</mo><mn>0</mn><mo>,</mo><mspace></mspace><mi>f</mi><mo>∈</mo><msup><mrow><mi>L</mi></mrow><mrow><mn>2</mn></mrow></msup><mo>(</mo><mo>∂</mo><mi>R</mi><mo>×</mo><mo>[</mo><mn>0</mn><mo>,</mo><mo>∞</mo><mo>)</mo><mo>)</mo><mo>.</mo></math></span></span></span> Other non-homogeneous boundary conditions are also considered.</div></div>\",\"PeriodicalId\":50147,\"journal\":{\"name\":\"Journal of Mathematical Analysis and Applications\",\"volume\":\"556 1\",\"pages\":\"Article 130073\"},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2025-09-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Mathematical Analysis and Applications\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0022247X25008546\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Mathematical Analysis and Applications","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022247X25008546","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
An extension of the spectral fractional Laplacian to non-homogeneous boundary condition on rectangular domains, with application to well-posedness for plate equation with structural damping
Let Δ be the Dirichlet Laplacian on a rectangular domain . We study the mapping properties of an extension of the spectral fractional Laplacian, , for , when applied to functions satisfying non-homogeneous boundary conditions. A symmetry formula is proven. As an application, we prove well-posedness results for the structurally damped plate equation with non-homogeneous boundary conditions Other non-homogeneous boundary conditions are also considered.
期刊介绍:
The Journal of Mathematical Analysis and Applications presents papers that treat mathematical analysis and its numerous applications. The journal emphasizes articles devoted to the mathematical treatment of questions arising in physics, chemistry, biology, and engineering, particularly those that stress analytical aspects and novel problems and their solutions.
Papers are sought which employ one or more of the following areas of classical analysis:
• Analytic number theory
• Functional analysis and operator theory
• Real and harmonic analysis
• Complex analysis
• Numerical analysis
• Applied mathematics
• Partial differential equations
• Dynamical systems
• Control and Optimization
• Probability
• Mathematical biology
• Combinatorics
• Mathematical physics.