Jiachen Li, Guangzhi Han, Jin Wan, Yuan Gao, Delong Han
{"title":"dualphysics - gs:用于水下场景重建的双物理引导3D高斯喷溅","authors":"Jiachen Li, Guangzhi Han, Jin Wan, Yuan Gao, Delong Han","doi":"10.1016/j.cag.2025.104405","DOIUrl":null,"url":null,"abstract":"<div><div>In 3D reconstruction of underwater scenes, traditional methods based on atmospheric optical models cannot effectively deal with the selective attenuation of light wavelengths and the effect of suspended particle scattering, which are unique to the water medium, and lead to color distortion, geometric artifacts, and collapsing phenomena at long distances. We propose the DualPhys-GS framework to achieve high-quality underwater reconstruction through a dual-path optimization mechanism. Our approach further develops a dual feature-guided attenuation-scattering modeling mechanism, the RGB-guided attenuation optimization model combines RGB features and depth information and can handle edge and structural details. In contrast, the multi-scale depth-aware scattering model captures scattering effects at different scales using a feature pyramid network and an attention mechanism. Meanwhile, we design several special loss functions. The attenuation scattering consistency loss ensures physical consistency. The water body type adaptive loss dynamically adjusts the weighting coefficients. The edge-aware scattering loss is used to maintain the sharpness of structural edges. The multi-scale feature loss helps to capture global and local structural information. In addition, we design a scene adaptive mechanism that can automatically identify the water-body-type characteristics (e.g., clear coral reef waters or turbid coastal waters) and dynamically adjust the scattering and attenuation parameters and optimization strategies. Experimental results show that our method outperforms existing methods in several metrics, especially in suspended matter-dense regions and long-distance scenes, and the reconstruction quality is significantly improved.</div></div>","PeriodicalId":50628,"journal":{"name":"Computers & Graphics-Uk","volume":"133 ","pages":"Article 104405"},"PeriodicalIF":2.8000,"publicationDate":"2025-09-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"DualPhys-GS: Dual physically-guided 3D Gaussian splatting for underwater scene reconstruction\",\"authors\":\"Jiachen Li, Guangzhi Han, Jin Wan, Yuan Gao, Delong Han\",\"doi\":\"10.1016/j.cag.2025.104405\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>In 3D reconstruction of underwater scenes, traditional methods based on atmospheric optical models cannot effectively deal with the selective attenuation of light wavelengths and the effect of suspended particle scattering, which are unique to the water medium, and lead to color distortion, geometric artifacts, and collapsing phenomena at long distances. We propose the DualPhys-GS framework to achieve high-quality underwater reconstruction through a dual-path optimization mechanism. Our approach further develops a dual feature-guided attenuation-scattering modeling mechanism, the RGB-guided attenuation optimization model combines RGB features and depth information and can handle edge and structural details. In contrast, the multi-scale depth-aware scattering model captures scattering effects at different scales using a feature pyramid network and an attention mechanism. Meanwhile, we design several special loss functions. The attenuation scattering consistency loss ensures physical consistency. The water body type adaptive loss dynamically adjusts the weighting coefficients. The edge-aware scattering loss is used to maintain the sharpness of structural edges. The multi-scale feature loss helps to capture global and local structural information. In addition, we design a scene adaptive mechanism that can automatically identify the water-body-type characteristics (e.g., clear coral reef waters or turbid coastal waters) and dynamically adjust the scattering and attenuation parameters and optimization strategies. Experimental results show that our method outperforms existing methods in several metrics, especially in suspended matter-dense regions and long-distance scenes, and the reconstruction quality is significantly improved.</div></div>\",\"PeriodicalId\":50628,\"journal\":{\"name\":\"Computers & Graphics-Uk\",\"volume\":\"133 \",\"pages\":\"Article 104405\"},\"PeriodicalIF\":2.8000,\"publicationDate\":\"2025-09-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Computers & Graphics-Uk\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0097849325002468\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, SOFTWARE ENGINEERING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computers & Graphics-Uk","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0097849325002468","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, SOFTWARE ENGINEERING","Score":null,"Total":0}
DualPhys-GS: Dual physically-guided 3D Gaussian splatting for underwater scene reconstruction
In 3D reconstruction of underwater scenes, traditional methods based on atmospheric optical models cannot effectively deal with the selective attenuation of light wavelengths and the effect of suspended particle scattering, which are unique to the water medium, and lead to color distortion, geometric artifacts, and collapsing phenomena at long distances. We propose the DualPhys-GS framework to achieve high-quality underwater reconstruction through a dual-path optimization mechanism. Our approach further develops a dual feature-guided attenuation-scattering modeling mechanism, the RGB-guided attenuation optimization model combines RGB features and depth information and can handle edge and structural details. In contrast, the multi-scale depth-aware scattering model captures scattering effects at different scales using a feature pyramid network and an attention mechanism. Meanwhile, we design several special loss functions. The attenuation scattering consistency loss ensures physical consistency. The water body type adaptive loss dynamically adjusts the weighting coefficients. The edge-aware scattering loss is used to maintain the sharpness of structural edges. The multi-scale feature loss helps to capture global and local structural information. In addition, we design a scene adaptive mechanism that can automatically identify the water-body-type characteristics (e.g., clear coral reef waters or turbid coastal waters) and dynamically adjust the scattering and attenuation parameters and optimization strategies. Experimental results show that our method outperforms existing methods in several metrics, especially in suspended matter-dense regions and long-distance scenes, and the reconstruction quality is significantly improved.
期刊介绍:
Computers & Graphics is dedicated to disseminate information on research and applications of computer graphics (CG) techniques. The journal encourages articles on:
1. Research and applications of interactive computer graphics. We are particularly interested in novel interaction techniques and applications of CG to problem domains.
2. State-of-the-art papers on late-breaking, cutting-edge research on CG.
3. Information on innovative uses of graphics principles and technologies.
4. Tutorial papers on both teaching CG principles and innovative uses of CG in education.