{"title":"具有两种不同导数的分数阶微分方程解的振荡行为","authors":"Said R. Grace , G.N. Chhatria","doi":"10.1016/j.cam.2025.117098","DOIUrl":null,"url":null,"abstract":"<div><div>This study investigates the asymptotic and oscillatory behavior of solutions to a class of forced nonlinear fractional differential equations (FDEs) characterized by two distinct Caputo fractional derivatives of the form <span><span><span><math><mrow><msup><mrow></mrow><mrow><mi>C</mi></mrow></msup><msubsup><mrow><mi>D</mi></mrow><mrow><mi>c</mi></mrow><mrow><mi>α</mi></mrow></msubsup><mi>Z</mi><mrow><mo>(</mo><mi>ℓ</mi><mo>)</mo></mrow><mo>+</mo><mi>a</mi><msup><mrow><mspace></mspace></mrow><mrow><mi>C</mi></mrow></msup><msubsup><mrow><mi>D</mi></mrow><mrow><mi>c</mi></mrow><mrow><mi>β</mi></mrow></msubsup><mi>Z</mi><mrow><mo>(</mo><mi>ℓ</mi><mo>)</mo></mrow><mo>−</mo><msub><mrow><mi>g</mi></mrow><mrow><mn>1</mn></mrow></msub><mrow><mo>(</mo><mi>ℓ</mi><mo>,</mo><mi>Z</mi><mrow><mo>(</mo><mi>ℓ</mi><mo>)</mo></mrow><mo>)</mo></mrow><mo>=</mo><mi>e</mi><mrow><mo>(</mo><mi>ℓ</mi><mo>)</mo></mrow><mo>+</mo><msub><mrow><mi>g</mi></mrow><mrow><mn>2</mn></mrow></msub><mrow><mo>(</mo><mi>ℓ</mi><mo>,</mo><mi>Z</mi><mrow><mo>(</mo><mi>ℓ</mi><mo>)</mo></mrow><mo>)</mo></mrow><mo>,</mo><mspace></mspace><mi>c</mi><mo>></mo><mn>1</mn><mo>,</mo></mrow></math></span></span></span>where <span><math><mrow><mn>0</mn><mo><</mo><mi>β</mi><mo><</mo><mn>1</mn><mo><</mo><mn>1</mn><mo>+</mo><mi>β</mi><mo>≤</mo><mi>α</mi><mo><</mo><mn>2</mn></mrow></math></span>. While multi-term FDEs are known to effectively model complex multi-scale phenomena like viscoelasticity, the qualitative theory for equations where the derivatives span both the sub-diffusive (<span><math><mrow><mi>β</mi><mo><</mo><mn>1</mn></mrow></math></span>) and super-diffusive (<span><math><mrow><mi>α</mi><mo>></mo><mn>1</mn></mrow></math></span>) regimes remains underdeveloped. This study aims to bridge this gap. Under specific growth conditions on the nonlinear functions <span><math><msub><mrow><mi>g</mi></mrow><mrow><mn>1</mn></mrow></msub></math></span> and <span><math><msub><mrow><mi>g</mi></mrow><mrow><mn>2</mn></mrow></msub></math></span>, novel sufficient criteria are established to ensure that all solutions of the equation are oscillatory. The proof technique employs a unified framework integrating the semi-group properties of integer-order calculus with fractional operators and proceeds via a counterfactual argument by assuming the existence of a non-oscillatory solution and deriving a contradiction. The results presented here significantly extend the existing oscillation theory for fractional differential equations with multiple derivatives. The theoretical findings are further illustrated with some examples.</div></div>","PeriodicalId":50226,"journal":{"name":"Journal of Computational and Applied Mathematics","volume":"476 ","pages":"Article 117098"},"PeriodicalIF":2.6000,"publicationDate":"2025-09-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Oscillatory behavior of solutions of fractional differential equations with two different derivatives\",\"authors\":\"Said R. Grace , G.N. Chhatria\",\"doi\":\"10.1016/j.cam.2025.117098\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>This study investigates the asymptotic and oscillatory behavior of solutions to a class of forced nonlinear fractional differential equations (FDEs) characterized by two distinct Caputo fractional derivatives of the form <span><span><span><math><mrow><msup><mrow></mrow><mrow><mi>C</mi></mrow></msup><msubsup><mrow><mi>D</mi></mrow><mrow><mi>c</mi></mrow><mrow><mi>α</mi></mrow></msubsup><mi>Z</mi><mrow><mo>(</mo><mi>ℓ</mi><mo>)</mo></mrow><mo>+</mo><mi>a</mi><msup><mrow><mspace></mspace></mrow><mrow><mi>C</mi></mrow></msup><msubsup><mrow><mi>D</mi></mrow><mrow><mi>c</mi></mrow><mrow><mi>β</mi></mrow></msubsup><mi>Z</mi><mrow><mo>(</mo><mi>ℓ</mi><mo>)</mo></mrow><mo>−</mo><msub><mrow><mi>g</mi></mrow><mrow><mn>1</mn></mrow></msub><mrow><mo>(</mo><mi>ℓ</mi><mo>,</mo><mi>Z</mi><mrow><mo>(</mo><mi>ℓ</mi><mo>)</mo></mrow><mo>)</mo></mrow><mo>=</mo><mi>e</mi><mrow><mo>(</mo><mi>ℓ</mi><mo>)</mo></mrow><mo>+</mo><msub><mrow><mi>g</mi></mrow><mrow><mn>2</mn></mrow></msub><mrow><mo>(</mo><mi>ℓ</mi><mo>,</mo><mi>Z</mi><mrow><mo>(</mo><mi>ℓ</mi><mo>)</mo></mrow><mo>)</mo></mrow><mo>,</mo><mspace></mspace><mi>c</mi><mo>></mo><mn>1</mn><mo>,</mo></mrow></math></span></span></span>where <span><math><mrow><mn>0</mn><mo><</mo><mi>β</mi><mo><</mo><mn>1</mn><mo><</mo><mn>1</mn><mo>+</mo><mi>β</mi><mo>≤</mo><mi>α</mi><mo><</mo><mn>2</mn></mrow></math></span>. While multi-term FDEs are known to effectively model complex multi-scale phenomena like viscoelasticity, the qualitative theory for equations where the derivatives span both the sub-diffusive (<span><math><mrow><mi>β</mi><mo><</mo><mn>1</mn></mrow></math></span>) and super-diffusive (<span><math><mrow><mi>α</mi><mo>></mo><mn>1</mn></mrow></math></span>) regimes remains underdeveloped. This study aims to bridge this gap. Under specific growth conditions on the nonlinear functions <span><math><msub><mrow><mi>g</mi></mrow><mrow><mn>1</mn></mrow></msub></math></span> and <span><math><msub><mrow><mi>g</mi></mrow><mrow><mn>2</mn></mrow></msub></math></span>, novel sufficient criteria are established to ensure that all solutions of the equation are oscillatory. The proof technique employs a unified framework integrating the semi-group properties of integer-order calculus with fractional operators and proceeds via a counterfactual argument by assuming the existence of a non-oscillatory solution and deriving a contradiction. The results presented here significantly extend the existing oscillation theory for fractional differential equations with multiple derivatives. The theoretical findings are further illustrated with some examples.</div></div>\",\"PeriodicalId\":50226,\"journal\":{\"name\":\"Journal of Computational and Applied Mathematics\",\"volume\":\"476 \",\"pages\":\"Article 117098\"},\"PeriodicalIF\":2.6000,\"publicationDate\":\"2025-09-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Computational and Applied Mathematics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0377042725006120\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Computational and Applied Mathematics","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0377042725006120","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
Oscillatory behavior of solutions of fractional differential equations with two different derivatives
This study investigates the asymptotic and oscillatory behavior of solutions to a class of forced nonlinear fractional differential equations (FDEs) characterized by two distinct Caputo fractional derivatives of the form where . While multi-term FDEs are known to effectively model complex multi-scale phenomena like viscoelasticity, the qualitative theory for equations where the derivatives span both the sub-diffusive () and super-diffusive () regimes remains underdeveloped. This study aims to bridge this gap. Under specific growth conditions on the nonlinear functions and , novel sufficient criteria are established to ensure that all solutions of the equation are oscillatory. The proof technique employs a unified framework integrating the semi-group properties of integer-order calculus with fractional operators and proceeds via a counterfactual argument by assuming the existence of a non-oscillatory solution and deriving a contradiction. The results presented here significantly extend the existing oscillation theory for fractional differential equations with multiple derivatives. The theoretical findings are further illustrated with some examples.
期刊介绍:
The Journal of Computational and Applied Mathematics publishes original papers of high scientific value in all areas of computational and applied mathematics. The main interest of the Journal is in papers that describe and analyze new computational techniques for solving scientific or engineering problems. Also the improved analysis, including the effectiveness and applicability, of existing methods and algorithms is of importance. The computational efficiency (e.g. the convergence, stability, accuracy, ...) should be proved and illustrated by nontrivial numerical examples. Papers describing only variants of existing methods, without adding significant new computational properties are not of interest.
The audience consists of: applied mathematicians, numerical analysts, computational scientists and engineers.