彩色图像的曲率导向卡通纹理分解

IF 2.6 2区 数学 Q1 MATHEMATICS, APPLIED
Jingjie Wang, Wei Wang
{"title":"彩色图像的曲率导向卡通纹理分解","authors":"Jingjie Wang,&nbsp;Wei Wang","doi":"10.1016/j.cam.2025.117075","DOIUrl":null,"url":null,"abstract":"<div><div>In this paper, we propose a novel curvature-guided variational model for color image decomposition. In particular, we integrate the curvature priors into the traditional variational model to steer the evolution towards preserving curvature information, meanwhile, we incorporate saturation-value total variation to regularize the cartoon component of a color image. Additionally, we utilize the <span><math><msup><mrow><mi>L</mi></mrow><mrow><mn>1</mn></mrow></msup></math></span> norm to model the texture component in the saturation-value color space. The proposed variational model introduces an energy functional to achieve cartoon and texture decomposition in saturation-value color space, and preserves color information, fine structures/edges in the cartoon component. Theoretically, we explore the properties of the proposed model and provide a theoretical discussion about the existence of the solution. We then develop an effective and efficient algorithm to minimize the problem by utilizing the alternating direction method of multipliers. Numerical examples are presented to demonstrate that the performance of our framework competes favorably with other methods in terms of visual quality and metrics such as structure similarity (SSIM), peak signal-to-noise ratio (PSNR), quaternion structural similarity (QSSIM), S-CIELAB color metric, average local contrast (ALC), and discrete entropy (DE).</div></div>","PeriodicalId":50226,"journal":{"name":"Journal of Computational and Applied Mathematics","volume":"476 ","pages":"Article 117075"},"PeriodicalIF":2.6000,"publicationDate":"2025-09-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Curvature-guided cartoon-texture decomposition of a color image\",\"authors\":\"Jingjie Wang,&nbsp;Wei Wang\",\"doi\":\"10.1016/j.cam.2025.117075\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>In this paper, we propose a novel curvature-guided variational model for color image decomposition. In particular, we integrate the curvature priors into the traditional variational model to steer the evolution towards preserving curvature information, meanwhile, we incorporate saturation-value total variation to regularize the cartoon component of a color image. Additionally, we utilize the <span><math><msup><mrow><mi>L</mi></mrow><mrow><mn>1</mn></mrow></msup></math></span> norm to model the texture component in the saturation-value color space. The proposed variational model introduces an energy functional to achieve cartoon and texture decomposition in saturation-value color space, and preserves color information, fine structures/edges in the cartoon component. Theoretically, we explore the properties of the proposed model and provide a theoretical discussion about the existence of the solution. We then develop an effective and efficient algorithm to minimize the problem by utilizing the alternating direction method of multipliers. Numerical examples are presented to demonstrate that the performance of our framework competes favorably with other methods in terms of visual quality and metrics such as structure similarity (SSIM), peak signal-to-noise ratio (PSNR), quaternion structural similarity (QSSIM), S-CIELAB color metric, average local contrast (ALC), and discrete entropy (DE).</div></div>\",\"PeriodicalId\":50226,\"journal\":{\"name\":\"Journal of Computational and Applied Mathematics\",\"volume\":\"476 \",\"pages\":\"Article 117075\"},\"PeriodicalIF\":2.6000,\"publicationDate\":\"2025-09-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Computational and Applied Mathematics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0377042725005898\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Computational and Applied Mathematics","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0377042725005898","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

摘要

本文提出了一种新的曲率导向的彩色图像分解变分模型。特别地,我们在传统的变分模型中引入曲率先验,引导进化向保留曲率信息的方向发展,同时,我们引入饱和值总变分来正则化彩色图像的卡通成分。此外,我们利用L1范数在饱和值颜色空间中对纹理成分进行建模。该变分模型引入能量函数,在饱和值色彩空间中实现卡通和纹理的分解,并保留卡通成分中的颜色信息、精细结构/边缘。理论上,我们探讨了所提出的模型的性质,并对解的存在性进行了理论讨论。然后,我们开发了一种有效的算法,利用乘法器的交替方向方法来最小化问题。数值示例表明,我们的框架在视觉质量和指标方面的性能优于其他方法,如结构相似性(SSIM)、峰值信噪比(PSNR)、四元数结构相似性(QSSIM)、S-CIELAB颜色度量、平均局部对比度(ALC)和离散熵(DE)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Curvature-guided cartoon-texture decomposition of a color image
In this paper, we propose a novel curvature-guided variational model for color image decomposition. In particular, we integrate the curvature priors into the traditional variational model to steer the evolution towards preserving curvature information, meanwhile, we incorporate saturation-value total variation to regularize the cartoon component of a color image. Additionally, we utilize the L1 norm to model the texture component in the saturation-value color space. The proposed variational model introduces an energy functional to achieve cartoon and texture decomposition in saturation-value color space, and preserves color information, fine structures/edges in the cartoon component. Theoretically, we explore the properties of the proposed model and provide a theoretical discussion about the existence of the solution. We then develop an effective and efficient algorithm to minimize the problem by utilizing the alternating direction method of multipliers. Numerical examples are presented to demonstrate that the performance of our framework competes favorably with other methods in terms of visual quality and metrics such as structure similarity (SSIM), peak signal-to-noise ratio (PSNR), quaternion structural similarity (QSSIM), S-CIELAB color metric, average local contrast (ALC), and discrete entropy (DE).
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
5.40
自引率
4.20%
发文量
437
审稿时长
3.0 months
期刊介绍: The Journal of Computational and Applied Mathematics publishes original papers of high scientific value in all areas of computational and applied mathematics. The main interest of the Journal is in papers that describe and analyze new computational techniques for solving scientific or engineering problems. Also the improved analysis, including the effectiveness and applicability, of existing methods and algorithms is of importance. The computational efficiency (e.g. the convergence, stability, accuracy, ...) should be proved and illustrated by nontrivial numerical examples. Papers describing only variants of existing methods, without adding significant new computational properties are not of interest. The audience consists of: applied mathematicians, numerical analysts, computational scientists and engineers.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信