{"title":"火灾沿垂直墙体传播的实验研究","authors":"F. Di Giorgio, C. Galizzi, M. Kühni","doi":"10.1016/j.firesaf.2025.104540","DOIUrl":null,"url":null,"abstract":"<div><div>A characterization study was conducted on a novel experimental setup designed to investigate the spread of façade fires. This setup consists of a wall divided into an effusion zone, where methane injection simulates the pyrolysis process, and a large inert zone where the flame propagates. Various flow rates were applied to the effusion module and analyzed through direct visualizations, CH* and OH* chemiluminescence imaging, as well as temperature and heat flux. The results highlight and confirm the well-established influence of fuel injection rates on flame behavior and propagation. This standardized configuration serves as a benchmark for comparisons with more complex scenarios involving different arrangements of effusion and inert zones. Moreover, the data generated in this study provide a valuable basis for evaluating the reliability of fire engineering models and codes.</div></div>","PeriodicalId":50445,"journal":{"name":"Fire Safety Journal","volume":"158 ","pages":"Article 104540"},"PeriodicalIF":3.3000,"publicationDate":"2025-09-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Experimental study of fire propagation along a vertical wall in a lab scale setup\",\"authors\":\"F. Di Giorgio, C. Galizzi, M. Kühni\",\"doi\":\"10.1016/j.firesaf.2025.104540\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>A characterization study was conducted on a novel experimental setup designed to investigate the spread of façade fires. This setup consists of a wall divided into an effusion zone, where methane injection simulates the pyrolysis process, and a large inert zone where the flame propagates. Various flow rates were applied to the effusion module and analyzed through direct visualizations, CH* and OH* chemiluminescence imaging, as well as temperature and heat flux. The results highlight and confirm the well-established influence of fuel injection rates on flame behavior and propagation. This standardized configuration serves as a benchmark for comparisons with more complex scenarios involving different arrangements of effusion and inert zones. Moreover, the data generated in this study provide a valuable basis for evaluating the reliability of fire engineering models and codes.</div></div>\",\"PeriodicalId\":50445,\"journal\":{\"name\":\"Fire Safety Journal\",\"volume\":\"158 \",\"pages\":\"Article 104540\"},\"PeriodicalIF\":3.3000,\"publicationDate\":\"2025-09-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Fire Safety Journal\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0379711225002048\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, CIVIL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Fire Safety Journal","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0379711225002048","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, CIVIL","Score":null,"Total":0}
Experimental study of fire propagation along a vertical wall in a lab scale setup
A characterization study was conducted on a novel experimental setup designed to investigate the spread of façade fires. This setup consists of a wall divided into an effusion zone, where methane injection simulates the pyrolysis process, and a large inert zone where the flame propagates. Various flow rates were applied to the effusion module and analyzed through direct visualizations, CH* and OH* chemiluminescence imaging, as well as temperature and heat flux. The results highlight and confirm the well-established influence of fuel injection rates on flame behavior and propagation. This standardized configuration serves as a benchmark for comparisons with more complex scenarios involving different arrangements of effusion and inert zones. Moreover, the data generated in this study provide a valuable basis for evaluating the reliability of fire engineering models and codes.
期刊介绍:
Fire Safety Journal is the leading publication dealing with all aspects of fire safety engineering. Its scope is purposefully wide, as it is deemed important to encourage papers from all sources within this multidisciplinary subject, thus providing a forum for its further development as a distinct engineering discipline. This is an essential step towards gaining a status equal to that enjoyed by the other engineering disciplines.