基于区间值毕达哥拉斯模糊距离的多属性决策扩展劣比法:在制造业绿色供应商选择中的应用

IF 6.6 1区 计算机科学 Q1 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE
Zhe Liu , Donglai Wang , Muhammet Deveci , Sukumar Letchmunan
{"title":"基于区间值毕达哥拉斯模糊距离的多属性决策扩展劣比法:在制造业绿色供应商选择中的应用","authors":"Zhe Liu ,&nbsp;Donglai Wang ,&nbsp;Muhammet Deveci ,&nbsp;Sukumar Letchmunan","doi":"10.1016/j.asoc.2025.113935","DOIUrl":null,"url":null,"abstract":"<div><div>Interval-valued Pythagorean fuzzy sets (IVPFSs) have emerged as a powerful tool for handling uncertainty and vagueness in multiattribute decision-making (MADM). In this paper, we first propose a novel distance measure for IVPFSs based on triangular divergence, which satisfies all core distance axioms and significantly improves discrimination ability compared to existing measures. Building on this, we introduce a maximizing deviation strategy with a new loss function to objectively determine attribute weights. Furthermore, we develop an extended inferior ratio (EIR) method that incorporates a dynamic weight parameter to flexibly balance the influence of positive and negative ideal solutions. The performance of the proposed method is demonstrated through a case study on green supplier selection in the manufacturing industry. The results indicate that, among the seven criteria evaluated, the most suitable suppliers are ranked as follows: <span><math><mi>β</mi></math></span> (1.0000), <span><math><mi>α</mi></math></span> (0.6471), <span><math><mi>δ</mi></math></span> (0.3500), <span><math><mi>ϵ</mi></math></span> (0.0690), and <span><math><mi>θ</mi></math></span> (0.0000). In addition, sensitivity and comparative analyses confirm the robustness and consistency of the proposed method, reflecting its effectiveness and practical value for sustainable decision-making in real-world scenarios.</div></div>","PeriodicalId":50737,"journal":{"name":"Applied Soft Computing","volume":"185 ","pages":"Article 113935"},"PeriodicalIF":6.6000,"publicationDate":"2025-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Interval-valued Pythagorean fuzzy distance-based extended inferior ratio method for multiattribute decision-making: Application to green supplier selection in manufacturing industry\",\"authors\":\"Zhe Liu ,&nbsp;Donglai Wang ,&nbsp;Muhammet Deveci ,&nbsp;Sukumar Letchmunan\",\"doi\":\"10.1016/j.asoc.2025.113935\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Interval-valued Pythagorean fuzzy sets (IVPFSs) have emerged as a powerful tool for handling uncertainty and vagueness in multiattribute decision-making (MADM). In this paper, we first propose a novel distance measure for IVPFSs based on triangular divergence, which satisfies all core distance axioms and significantly improves discrimination ability compared to existing measures. Building on this, we introduce a maximizing deviation strategy with a new loss function to objectively determine attribute weights. Furthermore, we develop an extended inferior ratio (EIR) method that incorporates a dynamic weight parameter to flexibly balance the influence of positive and negative ideal solutions. The performance of the proposed method is demonstrated through a case study on green supplier selection in the manufacturing industry. The results indicate that, among the seven criteria evaluated, the most suitable suppliers are ranked as follows: <span><math><mi>β</mi></math></span> (1.0000), <span><math><mi>α</mi></math></span> (0.6471), <span><math><mi>δ</mi></math></span> (0.3500), <span><math><mi>ϵ</mi></math></span> (0.0690), and <span><math><mi>θ</mi></math></span> (0.0000). In addition, sensitivity and comparative analyses confirm the robustness and consistency of the proposed method, reflecting its effectiveness and practical value for sustainable decision-making in real-world scenarios.</div></div>\",\"PeriodicalId\":50737,\"journal\":{\"name\":\"Applied Soft Computing\",\"volume\":\"185 \",\"pages\":\"Article 113935\"},\"PeriodicalIF\":6.6000,\"publicationDate\":\"2025-09-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Applied Soft Computing\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1568494625012487\",\"RegionNum\":1,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Soft Computing","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1568494625012487","RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

摘要

区间值毕达哥拉斯模糊集(ivpfs)已成为处理多属性决策(MADM)中不确定性和模糊性的有力工具。本文首先提出了一种新的基于三角散度的ivpfs距离测度,该测度满足所有核心距离公理,与现有测度相比显著提高了识别能力。在此基础上,引入了一种偏差最大化策略,并引入了一种新的损失函数来客观地确定属性的权重。此外,我们还提出了一种扩展的劣比(EIR)方法,该方法引入了一个动态权重参数来灵活地平衡正、负理想解的影响。以制造业绿色供应商选择为例,验证了该方法的有效性。结果表明,在7个评价指标中,最适合的供应商排序为:β(1.000)、α(0.6471)、δ(0.3500)、λ(0.0690)、θ(0.0000)。灵敏度分析和对比分析验证了所提方法的鲁棒性和一致性,反映了其在现实情景下可持续决策的有效性和实用价值。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Interval-valued Pythagorean fuzzy distance-based extended inferior ratio method for multiattribute decision-making: Application to green supplier selection in manufacturing industry
Interval-valued Pythagorean fuzzy sets (IVPFSs) have emerged as a powerful tool for handling uncertainty and vagueness in multiattribute decision-making (MADM). In this paper, we first propose a novel distance measure for IVPFSs based on triangular divergence, which satisfies all core distance axioms and significantly improves discrimination ability compared to existing measures. Building on this, we introduce a maximizing deviation strategy with a new loss function to objectively determine attribute weights. Furthermore, we develop an extended inferior ratio (EIR) method that incorporates a dynamic weight parameter to flexibly balance the influence of positive and negative ideal solutions. The performance of the proposed method is demonstrated through a case study on green supplier selection in the manufacturing industry. The results indicate that, among the seven criteria evaluated, the most suitable suppliers are ranked as follows: β (1.0000), α (0.6471), δ (0.3500), ϵ (0.0690), and θ (0.0000). In addition, sensitivity and comparative analyses confirm the robustness and consistency of the proposed method, reflecting its effectiveness and practical value for sustainable decision-making in real-world scenarios.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Applied Soft Computing
Applied Soft Computing 工程技术-计算机:跨学科应用
CiteScore
15.80
自引率
6.90%
发文量
874
审稿时长
10.9 months
期刊介绍: Applied Soft Computing is an international journal promoting an integrated view of soft computing to solve real life problems.The focus is to publish the highest quality research in application and convergence of the areas of Fuzzy Logic, Neural Networks, Evolutionary Computing, Rough Sets and other similar techniques to address real world complexities. Applied Soft Computing is a rolling publication: articles are published as soon as the editor-in-chief has accepted them. Therefore, the web site will continuously be updated with new articles and the publication time will be short.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信