双相传热条件下具有热辐射和活化能的Casson流体Marangoni对流Cattaneo-Christov模型

Q1 Chemical Engineering
D. Prabu , Shajar Abbas , Inamullah Inam , Mustafa Bayram , Barno Abdullaeva , Afnan Al Agha , Hakim AL Garalleh , Ibrahim Mahariq
{"title":"双相传热条件下具有热辐射和活化能的Casson流体Marangoni对流Cattaneo-Christov模型","authors":"D. Prabu ,&nbsp;Shajar Abbas ,&nbsp;Inamullah Inam ,&nbsp;Mustafa Bayram ,&nbsp;Barno Abdullaeva ,&nbsp;Afnan Al Agha ,&nbsp;Hakim AL Garalleh ,&nbsp;Ibrahim Mahariq","doi":"10.1016/j.ijft.2025.101413","DOIUrl":null,"url":null,"abstract":"<div><div>This study investigates the effect of local thermal non-equilibrium (LTNE) conditions on the flow of Casson fluid under elastic deformation along a stretched boundary. The Cattaneo–Christov flux framework is used to model thermal and mass diffusion, incorporating non-classical effects of thermal and concentration relaxation phenomena. Furthermore, the model accounts for thermal radiation, activation energy, and an internal heat source, offering a more comprehensive representation of energy transfer in non-Newtonian fluid systems. These physical effects are particularly relevant in technical applications that require precise heat transfer control between fluid and solid phases, such as heat exchangers, geothermal systems, and thermal control devices. The model is also applicable in industrial processes that involve viscoplastic or yield-stress fluids, such as polymer extrusion, oil recovery, and food processing. By applying similarity transformations, the governing partial differential equations are reduced to a set of coupled ordinary differential equations, which are numerically solved using MATLAB’s bvp4c solver. The results reveal that increasing the interphase heat transfer coefficient <span><math><mrow><mo>(</mo><msub><mrow><mi>N</mi></mrow><mrow><mi>h</mi></mrow></msub><mo>)</mo></mrow></math></span> from 1.0 to 5.0 causes a 23.7% reduction in the fluid-phase temperature and a 31.4% reduction in the solid-phase temperature at a fixed location. Furthermore, the presence of thermal radiation (<span><math><mrow><mi>R</mi><mi>d</mi><mo>=</mo><mn>2</mn></mrow></math></span>) and internal heat generation (<span><math><mrow><mi>Q</mi><mo>=</mo><mn>1</mn><mo>.</mo><mn>5</mn></mrow></math></span>) amplifies this cooling effect by an additional 12.5% compared to the case without these effects. These findings emphasize the critical role of the LTNE parameters and energy transport mechanisms in optimizing thermal performance in engineering systems.</div></div>","PeriodicalId":36341,"journal":{"name":"International Journal of Thermofluids","volume":"30 ","pages":"Article 101413"},"PeriodicalIF":0.0000,"publicationDate":"2025-09-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Cattaneo–Christov model for Marangoni convection in Casson fluid with thermal radiation and activation energy under dual-phase heat transfer\",\"authors\":\"D. Prabu ,&nbsp;Shajar Abbas ,&nbsp;Inamullah Inam ,&nbsp;Mustafa Bayram ,&nbsp;Barno Abdullaeva ,&nbsp;Afnan Al Agha ,&nbsp;Hakim AL Garalleh ,&nbsp;Ibrahim Mahariq\",\"doi\":\"10.1016/j.ijft.2025.101413\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>This study investigates the effect of local thermal non-equilibrium (LTNE) conditions on the flow of Casson fluid under elastic deformation along a stretched boundary. The Cattaneo–Christov flux framework is used to model thermal and mass diffusion, incorporating non-classical effects of thermal and concentration relaxation phenomena. Furthermore, the model accounts for thermal radiation, activation energy, and an internal heat source, offering a more comprehensive representation of energy transfer in non-Newtonian fluid systems. These physical effects are particularly relevant in technical applications that require precise heat transfer control between fluid and solid phases, such as heat exchangers, geothermal systems, and thermal control devices. The model is also applicable in industrial processes that involve viscoplastic or yield-stress fluids, such as polymer extrusion, oil recovery, and food processing. By applying similarity transformations, the governing partial differential equations are reduced to a set of coupled ordinary differential equations, which are numerically solved using MATLAB’s bvp4c solver. The results reveal that increasing the interphase heat transfer coefficient <span><math><mrow><mo>(</mo><msub><mrow><mi>N</mi></mrow><mrow><mi>h</mi></mrow></msub><mo>)</mo></mrow></math></span> from 1.0 to 5.0 causes a 23.7% reduction in the fluid-phase temperature and a 31.4% reduction in the solid-phase temperature at a fixed location. Furthermore, the presence of thermal radiation (<span><math><mrow><mi>R</mi><mi>d</mi><mo>=</mo><mn>2</mn></mrow></math></span>) and internal heat generation (<span><math><mrow><mi>Q</mi><mo>=</mo><mn>1</mn><mo>.</mo><mn>5</mn></mrow></math></span>) amplifies this cooling effect by an additional 12.5% compared to the case without these effects. These findings emphasize the critical role of the LTNE parameters and energy transport mechanisms in optimizing thermal performance in engineering systems.</div></div>\",\"PeriodicalId\":36341,\"journal\":{\"name\":\"International Journal of Thermofluids\",\"volume\":\"30 \",\"pages\":\"Article 101413\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2025-09-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Thermofluids\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2666202725003593\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"Chemical Engineering\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Thermofluids","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2666202725003593","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Chemical Engineering","Score":null,"Total":0}
引用次数: 0

摘要

本文研究了局部热不平衡条件对卡森流体沿拉伸边界弹性变形流动的影响。Cattaneo-Christov通量框架用于模拟热和质量扩散,并结合了热和浓度松弛现象的非经典效应。此外,该模型考虑了热辐射、活化能和内部热源,为非牛顿流体系统中的能量传递提供了更全面的表示。这些物理效应在需要流体和固相之间精确传热控制的技术应用中特别相关,例如热交换器、地热系统和热控制装置。该模型也适用于涉及粘塑性或屈服应力流体的工业过程,如聚合物挤出、石油开采和食品加工。通过相似变换,将控制偏微分方程简化为一组耦合的常微分方程,利用MATLAB的bvp4c求解器对其进行数值求解。结果表明,将相间换热系数(Nh)从1.0提高到5.0,在固定位置,流体温度降低23.7%,固相温度降低31.4%。此外,热辐射(Rd=2)和内部热生成(Q=1.5)的存在使这种冷却效果比没有这些效果的情况下增加了12.5%。这些发现强调了LTNE参数和能量传递机制在优化工程系统热性能中的关键作用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Cattaneo–Christov model for Marangoni convection in Casson fluid with thermal radiation and activation energy under dual-phase heat transfer
This study investigates the effect of local thermal non-equilibrium (LTNE) conditions on the flow of Casson fluid under elastic deformation along a stretched boundary. The Cattaneo–Christov flux framework is used to model thermal and mass diffusion, incorporating non-classical effects of thermal and concentration relaxation phenomena. Furthermore, the model accounts for thermal radiation, activation energy, and an internal heat source, offering a more comprehensive representation of energy transfer in non-Newtonian fluid systems. These physical effects are particularly relevant in technical applications that require precise heat transfer control between fluid and solid phases, such as heat exchangers, geothermal systems, and thermal control devices. The model is also applicable in industrial processes that involve viscoplastic or yield-stress fluids, such as polymer extrusion, oil recovery, and food processing. By applying similarity transformations, the governing partial differential equations are reduced to a set of coupled ordinary differential equations, which are numerically solved using MATLAB’s bvp4c solver. The results reveal that increasing the interphase heat transfer coefficient (Nh) from 1.0 to 5.0 causes a 23.7% reduction in the fluid-phase temperature and a 31.4% reduction in the solid-phase temperature at a fixed location. Furthermore, the presence of thermal radiation (Rd=2) and internal heat generation (Q=1.5) amplifies this cooling effect by an additional 12.5% compared to the case without these effects. These findings emphasize the critical role of the LTNE parameters and energy transport mechanisms in optimizing thermal performance in engineering systems.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
International Journal of Thermofluids
International Journal of Thermofluids Engineering-Mechanical Engineering
CiteScore
10.10
自引率
0.00%
发文量
111
审稿时长
66 days
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信