{"title":"基于量子点元胞自动机的通用可编程逻辑门提高数字系统的可靠性和效率","authors":"Jun-Cheol Jeon","doi":"10.1016/j.rinp.2025.108454","DOIUrl":null,"url":null,"abstract":"<div><div>As quantum-dot cellular automata (QCA) is gaining attention as a next-generation circuit technology, various logic circuits using QCA are being developed. The performance of digital logic circuits depends on the performance of basic logic gates, and the development of efficient universal gates improves the reliability and efficiency of digital systems by reducing the types of basic logic gates. This study proposes an efficient QCA-based universal programmable logic (UPL) gate that can perform not only NAND and NOR, which are well-known as universal gates, but also XOR and XNOR, which have complex structures of 2-level logic gates, with a single gate. A variety of combinational logic circuits are designed using the proposed UPL gate, and it is demonstrated that it operates as a universal gate and is scalable. Furthermore, the average output polarization is highly stable, exceeding 9.5, and it demonstrates a significant 44% improvement in design cost compared to the best existing QCA-based universal gate. These efforts ultimately lead to the simplification of the design and process of digital systems, which reduces the number of points of failure and reduces the manufacturing cost.</div></div>","PeriodicalId":21042,"journal":{"name":"Results in Physics","volume":"77 ","pages":"Article 108454"},"PeriodicalIF":4.6000,"publicationDate":"2025-09-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Universal programmable logic gate based on quantum-dot cellular automata for enhancing reliability and efficiency of digital systems\",\"authors\":\"Jun-Cheol Jeon\",\"doi\":\"10.1016/j.rinp.2025.108454\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>As quantum-dot cellular automata (QCA) is gaining attention as a next-generation circuit technology, various logic circuits using QCA are being developed. The performance of digital logic circuits depends on the performance of basic logic gates, and the development of efficient universal gates improves the reliability and efficiency of digital systems by reducing the types of basic logic gates. This study proposes an efficient QCA-based universal programmable logic (UPL) gate that can perform not only NAND and NOR, which are well-known as universal gates, but also XOR and XNOR, which have complex structures of 2-level logic gates, with a single gate. A variety of combinational logic circuits are designed using the proposed UPL gate, and it is demonstrated that it operates as a universal gate and is scalable. Furthermore, the average output polarization is highly stable, exceeding 9.5, and it demonstrates a significant 44% improvement in design cost compared to the best existing QCA-based universal gate. These efforts ultimately lead to the simplification of the design and process of digital systems, which reduces the number of points of failure and reduces the manufacturing cost.</div></div>\",\"PeriodicalId\":21042,\"journal\":{\"name\":\"Results in Physics\",\"volume\":\"77 \",\"pages\":\"Article 108454\"},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2025-09-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Results in Physics\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2211379725003481\",\"RegionNum\":2,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Results in Physics","FirstCategoryId":"101","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2211379725003481","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
Universal programmable logic gate based on quantum-dot cellular automata for enhancing reliability and efficiency of digital systems
As quantum-dot cellular automata (QCA) is gaining attention as a next-generation circuit technology, various logic circuits using QCA are being developed. The performance of digital logic circuits depends on the performance of basic logic gates, and the development of efficient universal gates improves the reliability and efficiency of digital systems by reducing the types of basic logic gates. This study proposes an efficient QCA-based universal programmable logic (UPL) gate that can perform not only NAND and NOR, which are well-known as universal gates, but also XOR and XNOR, which have complex structures of 2-level logic gates, with a single gate. A variety of combinational logic circuits are designed using the proposed UPL gate, and it is demonstrated that it operates as a universal gate and is scalable. Furthermore, the average output polarization is highly stable, exceeding 9.5, and it demonstrates a significant 44% improvement in design cost compared to the best existing QCA-based universal gate. These efforts ultimately lead to the simplification of the design and process of digital systems, which reduces the number of points of failure and reduces the manufacturing cost.
Results in PhysicsMATERIALS SCIENCE, MULTIDISCIPLINARYPHYSIC-PHYSICS, MULTIDISCIPLINARY
CiteScore
8.70
自引率
9.40%
发文量
754
审稿时长
50 days
期刊介绍:
Results in Physics is an open access journal offering authors the opportunity to publish in all fundamental and interdisciplinary areas of physics, materials science, and applied physics. Papers of a theoretical, computational, and experimental nature are all welcome. Results in Physics accepts papers that are scientifically sound, technically correct and provide valuable new knowledge to the physics community. Topics such as three-dimensional flow and magnetohydrodynamics are not within the scope of Results in Physics.
Results in Physics welcomes three types of papers:
1. Full research papers
2. Microarticles: very short papers, no longer than two pages. They may consist of a single, but well-described piece of information, such as:
- Data and/or a plot plus a description
- Description of a new method or instrumentation
- Negative results
- Concept or design study
3. Letters to the Editor: Letters discussing a recent article published in Results in Physics are welcome. These are objective, constructive, or educational critiques of papers published in Results in Physics. Accepted letters will be sent to the author of the original paper for a response. Each letter and response is published together. Letters should be received within 8 weeks of the article''s publication. They should not exceed 750 words of text and 10 references.