癌症动力学与治疗和破坏细菌的数学模型

IF 1.8 4区 数学 Q2 BIOLOGY
Anna Geretovszky , Gergely Röst
{"title":"癌症动力学与治疗和破坏细菌的数学模型","authors":"Anna Geretovszky ,&nbsp;Gergely Röst","doi":"10.1016/j.mbs.2025.109541","DOIUrl":null,"url":null,"abstract":"<div><div>We construct a mathematical model of cancer dynamics with chemotherapeutic treatment, in the presence of bacteria that are capable of metabolizing the chemotherapeutic drug, hence sabotaging the treatment. We investigate the possibility of complementing the cancer treatment with antibiotic drugs, thus eradicating the bacteria or at least mitigating their negative impact on the prospects of therapy. Our model is a nonlinear system of four differential equations, for which we perform a complete analysis, explicitly characterizing the four possible outcomes, depending on whether the cancer cells or the bacteria become extinct or persist. Global stability results are proven by the iterative application of a comparison principle, and a bifurcation diagram is created to show the transitions between scenarios with respect to the controllable parameters. We apply our model to an experiment on mice with colon cancer and the drug Gemcitabine.</div></div>","PeriodicalId":51119,"journal":{"name":"Mathematical Biosciences","volume":"389 ","pages":"Article 109541"},"PeriodicalIF":1.8000,"publicationDate":"2025-09-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A mathematical model for cancer dynamics with treatment and saboteur bacteria\",\"authors\":\"Anna Geretovszky ,&nbsp;Gergely Röst\",\"doi\":\"10.1016/j.mbs.2025.109541\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>We construct a mathematical model of cancer dynamics with chemotherapeutic treatment, in the presence of bacteria that are capable of metabolizing the chemotherapeutic drug, hence sabotaging the treatment. We investigate the possibility of complementing the cancer treatment with antibiotic drugs, thus eradicating the bacteria or at least mitigating their negative impact on the prospects of therapy. Our model is a nonlinear system of four differential equations, for which we perform a complete analysis, explicitly characterizing the four possible outcomes, depending on whether the cancer cells or the bacteria become extinct or persist. Global stability results are proven by the iterative application of a comparison principle, and a bifurcation diagram is created to show the transitions between scenarios with respect to the controllable parameters. We apply our model to an experiment on mice with colon cancer and the drug Gemcitabine.</div></div>\",\"PeriodicalId\":51119,\"journal\":{\"name\":\"Mathematical Biosciences\",\"volume\":\"389 \",\"pages\":\"Article 109541\"},\"PeriodicalIF\":1.8000,\"publicationDate\":\"2025-09-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Mathematical Biosciences\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0025556425001671\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mathematical Biosciences","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0025556425001671","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

我们在能够代谢化疗药物的细菌存在的情况下,构建了化疗治疗癌症动力学的数学模型,从而破坏了治疗。我们研究了用抗生素药物补充癌症治疗的可能性,从而根除细菌或至少减轻它们对治疗前景的负面影响。我们的模型是一个由四个微分方程组成的非线性系统,我们对此进行了完整的分析,明确地描述了四种可能的结果,这取决于癌细胞或细菌是灭绝还是持续存在。通过比较原理的迭代应用证明了全局稳定性结果,并创建了分岔图来表示各场景之间相对于可控参数的转换。我们将我们的模型应用于结肠癌小鼠和药物吉西他滨的实验。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A mathematical model for cancer dynamics with treatment and saboteur bacteria
We construct a mathematical model of cancer dynamics with chemotherapeutic treatment, in the presence of bacteria that are capable of metabolizing the chemotherapeutic drug, hence sabotaging the treatment. We investigate the possibility of complementing the cancer treatment with antibiotic drugs, thus eradicating the bacteria or at least mitigating their negative impact on the prospects of therapy. Our model is a nonlinear system of four differential equations, for which we perform a complete analysis, explicitly characterizing the four possible outcomes, depending on whether the cancer cells or the bacteria become extinct or persist. Global stability results are proven by the iterative application of a comparison principle, and a bifurcation diagram is created to show the transitions between scenarios with respect to the controllable parameters. We apply our model to an experiment on mice with colon cancer and the drug Gemcitabine.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Mathematical Biosciences
Mathematical Biosciences 生物-生物学
CiteScore
7.50
自引率
2.30%
发文量
67
审稿时长
18 days
期刊介绍: Mathematical Biosciences publishes work providing new concepts or new understanding of biological systems using mathematical models, or methodological articles likely to find application to multiple biological systems. Papers are expected to present a major research finding of broad significance for the biological sciences, or mathematical biology. Mathematical Biosciences welcomes original research articles, letters, reviews and perspectives.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信