用于固态钠离子电池的gd2o3改性磷酸钠玻璃陶瓷电解质中Na+离子的输送

IF 2.8 3区 物理与天体物理 Q2 PHYSICS, CONDENSED MATTER
K.C.Acharyulu Srinivasula , S. Bharadwaj , Vamsi Krishna Katta , H.C. Manjunatha , Dimple P. Dutta , Balaji Rao Ravuri
{"title":"用于固态钠离子电池的gd2o3改性磷酸钠玻璃陶瓷电解质中Na+离子的输送","authors":"K.C.Acharyulu Srinivasula ,&nbsp;S. Bharadwaj ,&nbsp;Vamsi Krishna Katta ,&nbsp;H.C. Manjunatha ,&nbsp;Dimple P. Dutta ,&nbsp;Balaji Rao Ravuri","doi":"10.1016/j.physb.2025.417835","DOIUrl":null,"url":null,"abstract":"<div><div>Glass electrolytes with the composition (100−x)[0.3Na<sub>2</sub>O–0.1SnO<sub>2</sub>–0.1SiO<sub>2</sub>–0.5P<sub>2</sub>O<sub>5</sub>]–xGd<sub>2</sub>O<sub>3</sub> (x = 0, 2, 5, 7, and 10 mol%; designated as G-NSnSPGd<sub>x</sub>) were synthesized via melt-quenching, ball milling, and crystallization at 900 °C for 3h to obtain glass-ceramic systems (GC-NSnSPGd<sub>x</sub>). XRD confirmed Na<sub>5</sub>GdSi<sub>4</sub>O<sub>12</sub> (PDF-00-035-0141, R <span><math><mrow><mover><mrow><mn>3</mn><mi>c</mi></mrow><mo>‾</mo></mover></mrow></math></span> space group) as the dominant ion-conducting phase. SEM and HR-TEM revealed crystallite sizes averaging 436 nm. A full-cell with NaMnO<sub>2</sub> cathode, GC-NSnSPGd<sub>10</sub>–9h electrolyte (optimized), and sodium metal anode showed low interfacial resistance, delivering 112 mAh g<sup>−1</sup> at 0.1 C and excellent cycling stability with 97 % Coulombic efficiency over 500 cycles. These results highlight the potential of Gd<sub>2</sub>O<sub>3</sub>-modified glass-ceramic electrolytes for high-performance sodium-ion batteries (NIBs).</div></div>","PeriodicalId":20116,"journal":{"name":"Physica B-condensed Matter","volume":"717 ","pages":"Article 417835"},"PeriodicalIF":2.8000,"publicationDate":"2025-09-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Tailoring Na+ ion transport in Gd2O3-modified sodium silicate phosphate glass-ceramic electrolytes for solid-state Na-ion batteries\",\"authors\":\"K.C.Acharyulu Srinivasula ,&nbsp;S. Bharadwaj ,&nbsp;Vamsi Krishna Katta ,&nbsp;H.C. Manjunatha ,&nbsp;Dimple P. Dutta ,&nbsp;Balaji Rao Ravuri\",\"doi\":\"10.1016/j.physb.2025.417835\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Glass electrolytes with the composition (100−x)[0.3Na<sub>2</sub>O–0.1SnO<sub>2</sub>–0.1SiO<sub>2</sub>–0.5P<sub>2</sub>O<sub>5</sub>]–xGd<sub>2</sub>O<sub>3</sub> (x = 0, 2, 5, 7, and 10 mol%; designated as G-NSnSPGd<sub>x</sub>) were synthesized via melt-quenching, ball milling, and crystallization at 900 °C for 3h to obtain glass-ceramic systems (GC-NSnSPGd<sub>x</sub>). XRD confirmed Na<sub>5</sub>GdSi<sub>4</sub>O<sub>12</sub> (PDF-00-035-0141, R <span><math><mrow><mover><mrow><mn>3</mn><mi>c</mi></mrow><mo>‾</mo></mover></mrow></math></span> space group) as the dominant ion-conducting phase. SEM and HR-TEM revealed crystallite sizes averaging 436 nm. A full-cell with NaMnO<sub>2</sub> cathode, GC-NSnSPGd<sub>10</sub>–9h electrolyte (optimized), and sodium metal anode showed low interfacial resistance, delivering 112 mAh g<sup>−1</sup> at 0.1 C and excellent cycling stability with 97 % Coulombic efficiency over 500 cycles. These results highlight the potential of Gd<sub>2</sub>O<sub>3</sub>-modified glass-ceramic electrolytes for high-performance sodium-ion batteries (NIBs).</div></div>\",\"PeriodicalId\":20116,\"journal\":{\"name\":\"Physica B-condensed Matter\",\"volume\":\"717 \",\"pages\":\"Article 417835\"},\"PeriodicalIF\":2.8000,\"publicationDate\":\"2025-09-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Physica B-condensed Matter\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0921452625009524\",\"RegionNum\":3,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"PHYSICS, CONDENSED MATTER\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physica B-condensed Matter","FirstCategoryId":"101","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0921452625009524","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, CONDENSED MATTER","Score":null,"Total":0}
引用次数: 0

摘要

通过熔体淬火、球磨和900℃结晶3h,合成了成分为(100−x)[0.3 na20 - 0.1 sno2 - 0.1 sio2 - 0.5 p2o5] -xGd2O3 (x = 0,2,5,7和10 mol%;命名为G-NSnSPGdx)的玻璃电解质,得到了玻璃陶瓷体系(GC-NSnSPGdx)。XRD证实Na5GdSi4O12 (PDF-00-035-0141, r3c空间基)为主导离子导电相。SEM和HR-TEM显示晶粒尺寸平均为436 nm。采用NaMnO2阴极、GC-NSnSPGd10-9h电解液(优化)和金属钠阳极的全电池显示出低界面电阻,在0.1℃下可输出112 mAh g - 1,并且具有良好的循环稳定性,500次循环库仑效率高达97%。这些结果突出了gd2o3修饰的玻璃陶瓷电解质在高性能钠离子电池(nib)中的潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Tailoring Na+ ion transport in Gd2O3-modified sodium silicate phosphate glass-ceramic electrolytes for solid-state Na-ion batteries
Glass electrolytes with the composition (100−x)[0.3Na2O–0.1SnO2–0.1SiO2–0.5P2O5]–xGd2O3 (x = 0, 2, 5, 7, and 10 mol%; designated as G-NSnSPGdx) were synthesized via melt-quenching, ball milling, and crystallization at 900 °C for 3h to obtain glass-ceramic systems (GC-NSnSPGdx). XRD confirmed Na5GdSi4O12 (PDF-00-035-0141, R 3c space group) as the dominant ion-conducting phase. SEM and HR-TEM revealed crystallite sizes averaging 436 nm. A full-cell with NaMnO2 cathode, GC-NSnSPGd10–9h electrolyte (optimized), and sodium metal anode showed low interfacial resistance, delivering 112 mAh g−1 at 0.1 C and excellent cycling stability with 97 % Coulombic efficiency over 500 cycles. These results highlight the potential of Gd2O3-modified glass-ceramic electrolytes for high-performance sodium-ion batteries (NIBs).
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Physica B-condensed Matter
Physica B-condensed Matter 物理-物理:凝聚态物理
CiteScore
4.90
自引率
7.10%
发文量
703
审稿时长
44 days
期刊介绍: Physica B: Condensed Matter comprises all condensed matter and material physics that involve theoretical, computational and experimental work. Papers should contain further developments and a proper discussion on the physics of experimental or theoretical results in one of the following areas: -Magnetism -Materials physics -Nanostructures and nanomaterials -Optics and optical materials -Quantum materials -Semiconductors -Strongly correlated systems -Superconductivity -Surfaces and interfaces
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信