低温辅助磨料水射流加工Ti-6Al-4V合金:热力学优化和基于ai的表面完整性预测

IF 9.2 2区 工程技术 Q1 ENERGY & FUELS
Shuaikang Chang , Wenchuan Liu , Jiren Tang , Mengyan Fan
{"title":"低温辅助磨料水射流加工Ti-6Al-4V合金:热力学优化和基于ai的表面完整性预测","authors":"Shuaikang Chang ,&nbsp;Wenchuan Liu ,&nbsp;Jiren Tang ,&nbsp;Mengyan Fan","doi":"10.1016/j.susmat.2025.e01685","DOIUrl":null,"url":null,"abstract":"<div><div>This study investigates the optimization of surface integrity in Ti-6Al-4V alloy through cryogenically assisted abrasive waterjet machining (CAAWJM), focusing on the regulation of thermo-mechanical mediated performance using liquid nitrogen (LN₂) deep cooling. While conventional abrasive waterjet machining (AWJM) offers distinct advantages for difficult-to-machine materials, such as titanium alloys, its inherent transient high-temperature effects can induce microstructural damage and thermal instability. Results demonstrated that LN₂ integration effectively reduces peak temperatures by 42 % while enhancing cooling rates, thereby substantially mitigating thermal degradation. Microstructural analyses reveal that CAAWJM promotes grain refinement (58 % reduction in α-Ti grain size), increases high-angle grain boundaries (up to 60.2 %), and stabilizes the β-phase (28 % higher retention compared to AWJM). Mechanical testing shows a 42 % improvement in microhardness near the jet impact zone, accompanied by a substantial reduction in surface roughness due to suppressed abrasive embedding and oxidation (TiO₂ content decreased by 42.48 %). A novel deep learning model (Bootstrap + TabPFN) is developed to predict surface integrity, achieving an R<sup>2</sup> of 0.955. These findings establish CAAWJM as a promising strategy for high-integrity machining of Ti-6Al-4V alloy, with implications for aerospace and biomedical applications.</div></div>","PeriodicalId":22097,"journal":{"name":"Sustainable Materials and Technologies","volume":"46 ","pages":"Article e01685"},"PeriodicalIF":9.2000,"publicationDate":"2025-09-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Cryogenic assisted abrasive waterjet machining of Ti-6Al-4V alloy: Thermo-mechanical optimization and AI-based surface integrity prediction\",\"authors\":\"Shuaikang Chang ,&nbsp;Wenchuan Liu ,&nbsp;Jiren Tang ,&nbsp;Mengyan Fan\",\"doi\":\"10.1016/j.susmat.2025.e01685\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>This study investigates the optimization of surface integrity in Ti-6Al-4V alloy through cryogenically assisted abrasive waterjet machining (CAAWJM), focusing on the regulation of thermo-mechanical mediated performance using liquid nitrogen (LN₂) deep cooling. While conventional abrasive waterjet machining (AWJM) offers distinct advantages for difficult-to-machine materials, such as titanium alloys, its inherent transient high-temperature effects can induce microstructural damage and thermal instability. Results demonstrated that LN₂ integration effectively reduces peak temperatures by 42 % while enhancing cooling rates, thereby substantially mitigating thermal degradation. Microstructural analyses reveal that CAAWJM promotes grain refinement (58 % reduction in α-Ti grain size), increases high-angle grain boundaries (up to 60.2 %), and stabilizes the β-phase (28 % higher retention compared to AWJM). Mechanical testing shows a 42 % improvement in microhardness near the jet impact zone, accompanied by a substantial reduction in surface roughness due to suppressed abrasive embedding and oxidation (TiO₂ content decreased by 42.48 %). A novel deep learning model (Bootstrap + TabPFN) is developed to predict surface integrity, achieving an R<sup>2</sup> of 0.955. These findings establish CAAWJM as a promising strategy for high-integrity machining of Ti-6Al-4V alloy, with implications for aerospace and biomedical applications.</div></div>\",\"PeriodicalId\":22097,\"journal\":{\"name\":\"Sustainable Materials and Technologies\",\"volume\":\"46 \",\"pages\":\"Article e01685\"},\"PeriodicalIF\":9.2000,\"publicationDate\":\"2025-09-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Sustainable Materials and Technologies\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2214993725004531\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENERGY & FUELS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Sustainable Materials and Technologies","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2214993725004531","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0

摘要

本研究研究了低温辅助磨料水射流加工(CAAWJM)对Ti-6Al-4V合金表面完整性的优化,重点研究了液氮(LN 2)深度冷却对热机械中介性能的调节。虽然传统的磨料水射流加工(AWJM)对钛合金等难加工材料具有明显的优势,但其固有的瞬态高温效应会导致微观组织损伤和热不稳定。结果表明,LN 2集成有效地降低了42%的峰值温度,同时提高了冷却速度,从而大大减轻了热降解。显微组织分析表明,CAAWJM促进了晶粒细化(α-Ti晶粒尺寸减小58%),增加了高角度晶界(高达60.2%),并稳定了β相(比AWJM高28%)。力学测试表明,射流冲击区附近的显微硬度提高了42%,同时由于抑制了磨料包埋和氧化,表面粗糙度大幅降低(tio_2含量降低了42.48%)。开发了一种新的深度学习模型(Bootstrap + TabPFN)来预测表面完整性,R2为0.955。这些发现表明,CAAWJM是Ti-6Al-4V合金高完整性加工的一种有前途的策略,对航空航天和生物医学应用具有重要意义。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Cryogenic assisted abrasive waterjet machining of Ti-6Al-4V alloy: Thermo-mechanical optimization and AI-based surface integrity prediction

Cryogenic assisted abrasive waterjet machining of Ti-6Al-4V alloy: Thermo-mechanical optimization and AI-based surface integrity prediction
This study investigates the optimization of surface integrity in Ti-6Al-4V alloy through cryogenically assisted abrasive waterjet machining (CAAWJM), focusing on the regulation of thermo-mechanical mediated performance using liquid nitrogen (LN₂) deep cooling. While conventional abrasive waterjet machining (AWJM) offers distinct advantages for difficult-to-machine materials, such as titanium alloys, its inherent transient high-temperature effects can induce microstructural damage and thermal instability. Results demonstrated that LN₂ integration effectively reduces peak temperatures by 42 % while enhancing cooling rates, thereby substantially mitigating thermal degradation. Microstructural analyses reveal that CAAWJM promotes grain refinement (58 % reduction in α-Ti grain size), increases high-angle grain boundaries (up to 60.2 %), and stabilizes the β-phase (28 % higher retention compared to AWJM). Mechanical testing shows a 42 % improvement in microhardness near the jet impact zone, accompanied by a substantial reduction in surface roughness due to suppressed abrasive embedding and oxidation (TiO₂ content decreased by 42.48 %). A novel deep learning model (Bootstrap + TabPFN) is developed to predict surface integrity, achieving an R2 of 0.955. These findings establish CAAWJM as a promising strategy for high-integrity machining of Ti-6Al-4V alloy, with implications for aerospace and biomedical applications.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Sustainable Materials and Technologies
Sustainable Materials and Technologies Energy-Renewable Energy, Sustainability and the Environment
CiteScore
13.40
自引率
4.20%
发文量
158
审稿时长
45 days
期刊介绍: Sustainable Materials and Technologies (SM&T), an international, cross-disciplinary, fully open access journal published by Elsevier, focuses on original full-length research articles and reviews. It covers applied or fundamental science of nano-, micro-, meso-, and macro-scale aspects of materials and technologies for sustainable development. SM&T gives special attention to contributions that bridge the knowledge gap between materials and system designs.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信