Tongtong Li , Kai Li , Ziyang Zhao , Qi Sun , Xinyan Zhang , Zhijun Yao , Jiansong Zhou , Bin Hu
{"title":"基于多模态神经影像信息的深度自适应融合网络用于重度抑郁症诊断:一项开放数据研究","authors":"Tongtong Li , Kai Li , Ziyang Zhao , Qi Sun , Xinyan Zhang , Zhijun Yao , Jiansong Zhou , Bin Hu","doi":"10.1016/j.neunet.2025.108151","DOIUrl":null,"url":null,"abstract":"<div><div>Neuroimaging offers powerful evidence for the automated diagnosis of major depressive disorder (MDD). However, discrepancies across imaging modalities hinder the exploration of cross-modal interactions and the effective integration of complementary features. To address this challenge, we propose a supervised Deep Adaptive Fusion Network (DAFN) that fully leverages the complementarity of multimodal neuroimaging information for the diagnosis of MDD. Specifically, high- and low-frequency features are extracted from the images using a customized convolutional neural network and multi-head self-attention encoders, respectively. A modality weight adaptation module dynamically adjusts the contribution of each modality during training, while a progressive information reinforcement training strategy reinforces multimodal fusion features. Finally, the performance of the DAFN is evaluated on both the open-access dataset and the recruited dataset. The results demonstrate that DAFN achieves competitive performance in multimodal neuroimaging fusion for the diagnosis of MDD. The source code is available at: <span><span>https://github.com/TTLi1996/DAFN</span><svg><path></path></svg></span>.</div></div>","PeriodicalId":49763,"journal":{"name":"Neural Networks","volume":"194 ","pages":"Article 108151"},"PeriodicalIF":6.3000,"publicationDate":"2025-09-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Deep adaptive fusion network with multimodal neuroimaging information for MDD diagnosis: an open data study\",\"authors\":\"Tongtong Li , Kai Li , Ziyang Zhao , Qi Sun , Xinyan Zhang , Zhijun Yao , Jiansong Zhou , Bin Hu\",\"doi\":\"10.1016/j.neunet.2025.108151\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Neuroimaging offers powerful evidence for the automated diagnosis of major depressive disorder (MDD). However, discrepancies across imaging modalities hinder the exploration of cross-modal interactions and the effective integration of complementary features. To address this challenge, we propose a supervised Deep Adaptive Fusion Network (DAFN) that fully leverages the complementarity of multimodal neuroimaging information for the diagnosis of MDD. Specifically, high- and low-frequency features are extracted from the images using a customized convolutional neural network and multi-head self-attention encoders, respectively. A modality weight adaptation module dynamically adjusts the contribution of each modality during training, while a progressive information reinforcement training strategy reinforces multimodal fusion features. Finally, the performance of the DAFN is evaluated on both the open-access dataset and the recruited dataset. The results demonstrate that DAFN achieves competitive performance in multimodal neuroimaging fusion for the diagnosis of MDD. The source code is available at: <span><span>https://github.com/TTLi1996/DAFN</span><svg><path></path></svg></span>.</div></div>\",\"PeriodicalId\":49763,\"journal\":{\"name\":\"Neural Networks\",\"volume\":\"194 \",\"pages\":\"Article 108151\"},\"PeriodicalIF\":6.3000,\"publicationDate\":\"2025-09-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Neural Networks\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0893608025010317\",\"RegionNum\":1,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Neural Networks","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0893608025010317","RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
Deep adaptive fusion network with multimodal neuroimaging information for MDD diagnosis: an open data study
Neuroimaging offers powerful evidence for the automated diagnosis of major depressive disorder (MDD). However, discrepancies across imaging modalities hinder the exploration of cross-modal interactions and the effective integration of complementary features. To address this challenge, we propose a supervised Deep Adaptive Fusion Network (DAFN) that fully leverages the complementarity of multimodal neuroimaging information for the diagnosis of MDD. Specifically, high- and low-frequency features are extracted from the images using a customized convolutional neural network and multi-head self-attention encoders, respectively. A modality weight adaptation module dynamically adjusts the contribution of each modality during training, while a progressive information reinforcement training strategy reinforces multimodal fusion features. Finally, the performance of the DAFN is evaluated on both the open-access dataset and the recruited dataset. The results demonstrate that DAFN achieves competitive performance in multimodal neuroimaging fusion for the diagnosis of MDD. The source code is available at: https://github.com/TTLi1996/DAFN.
期刊介绍:
Neural Networks is a platform that aims to foster an international community of scholars and practitioners interested in neural networks, deep learning, and other approaches to artificial intelligence and machine learning. Our journal invites submissions covering various aspects of neural networks research, from computational neuroscience and cognitive modeling to mathematical analyses and engineering applications. By providing a forum for interdisciplinary discussions between biology and technology, we aim to encourage the development of biologically-inspired artificial intelligence.