分数阶空间模式光通信中基于优化的可变形三图卷积网络的精确模式分类和图像传输

IF 2.5 3区 物理与天体物理 Q2 OPTICS
You-na Cha , Ok-hue Cho , Jin Wan Park
{"title":"分数阶空间模式光通信中基于优化的可变形三图卷积网络的精确模式分类和图像传输","authors":"You-na Cha ,&nbsp;Ok-hue Cho ,&nbsp;Jin Wan Park","doi":"10.1016/j.optcom.2025.132428","DOIUrl":null,"url":null,"abstract":"<div><div>Free-space optical (FSO) communication systems leveraging spatial-mode multiplexing offer high-capacity, low-interference data transmission, but existing methods often struggle with accurately classifying closely spaced fractional spatial modes due to limitations in feature representation, neighborhood modeling, and noise sensitivity. To overcome these challenges, this work proposes a novel Deformable Triple Attention Graph Convolutional Network with Dollmaker Optimization Algorithm (DTAGCN-DOA) for robust mode classification and high-resolution recognition of fractional Bessel-Gaussian (BG) beam-encoded data. Fractional BG beams are generated using a He–Ne laser modulated via a Spatial Light Modulator (SLM), encoding 8-bit digital symbols into structured spatial modes. A total of 51,200 beam intensity images, each corresponding to unique combinations of radial wave number and fractional orbital angular momentum, are collected and preprocessed using Masked Joint Bilateral Filtering (MJBF) to suppress noise while preserving fine spatial features. Feature extraction is conducted via a Boundary-Enhanced Patch-Merging Transformer (BEPMT), combining global semantics and boundary details. The proposed DTAGCN-DOA framework classifies fractional spatial modes using deformable graph convolutions and triple attention mechanisms, with hyperparameters optimized via the DOA. Grayscale images are encoded into 15,000 spatial modes, transmitted optically, and decoded using the trained model. It achieves 99.88 % accuracy, 31.4 dB PSNR, and 0.995 confidence, ensuring reliable, high-fidelity FSO data recognition.</div></div>","PeriodicalId":19586,"journal":{"name":"Optics Communications","volume":"596 ","pages":"Article 132428"},"PeriodicalIF":2.5000,"publicationDate":"2025-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Accurate mode classification and image transmission via optimized deformable triple graph convolution network in fractional spatial mode optical communication\",\"authors\":\"You-na Cha ,&nbsp;Ok-hue Cho ,&nbsp;Jin Wan Park\",\"doi\":\"10.1016/j.optcom.2025.132428\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Free-space optical (FSO) communication systems leveraging spatial-mode multiplexing offer high-capacity, low-interference data transmission, but existing methods often struggle with accurately classifying closely spaced fractional spatial modes due to limitations in feature representation, neighborhood modeling, and noise sensitivity. To overcome these challenges, this work proposes a novel Deformable Triple Attention Graph Convolutional Network with Dollmaker Optimization Algorithm (DTAGCN-DOA) for robust mode classification and high-resolution recognition of fractional Bessel-Gaussian (BG) beam-encoded data. Fractional BG beams are generated using a He–Ne laser modulated via a Spatial Light Modulator (SLM), encoding 8-bit digital symbols into structured spatial modes. A total of 51,200 beam intensity images, each corresponding to unique combinations of radial wave number and fractional orbital angular momentum, are collected and preprocessed using Masked Joint Bilateral Filtering (MJBF) to suppress noise while preserving fine spatial features. Feature extraction is conducted via a Boundary-Enhanced Patch-Merging Transformer (BEPMT), combining global semantics and boundary details. The proposed DTAGCN-DOA framework classifies fractional spatial modes using deformable graph convolutions and triple attention mechanisms, with hyperparameters optimized via the DOA. Grayscale images are encoded into 15,000 spatial modes, transmitted optically, and decoded using the trained model. It achieves 99.88 % accuracy, 31.4 dB PSNR, and 0.995 confidence, ensuring reliable, high-fidelity FSO data recognition.</div></div>\",\"PeriodicalId\":19586,\"journal\":{\"name\":\"Optics Communications\",\"volume\":\"596 \",\"pages\":\"Article 132428\"},\"PeriodicalIF\":2.5000,\"publicationDate\":\"2025-09-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Optics Communications\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0030401825009563\",\"RegionNum\":3,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"OPTICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Optics Communications","FirstCategoryId":"101","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0030401825009563","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"OPTICS","Score":null,"Total":0}
引用次数: 0

摘要

利用空间模式复用的自由空间光学(FSO)通信系统提供高容量、低干扰的数据传输,但由于特征表示、邻域建模和噪声敏感性的限制,现有方法通常难以准确分类紧密间隔的分数空间模式。为了克服这些挑战,本研究提出了一种新的具有娃娃制造商优化算法(DTAGCN-DOA)的可变形三重注意图卷积网络,用于分数贝塞尔-高斯(BG)波束编码数据的鲁棒模式分类和高分辨率识别。通过空间光调制器(SLM)调制He-Ne激光,将8位数字符号编码为结构化空间模式,产生分数BG光束。采集了51,200张光束强度图像,每张图像对应于径向波数和分数轨道角动量的独特组合,并使用掩膜联合双边滤波(MJBF)对其进行预处理,以抑制噪声,同时保持良好的空间特征。特征提取通过边界增强补丁合并转换器(BEPMT)进行,结合全局语义和边界细节。提出的DTAGCN-DOA框架利用可变形图卷积和三重注意机制对分数阶空间模式进行分类,并通过DOA对超参数进行优化。灰度图像被编码成15000个空间模式,光学传输,并使用训练模型解码。它的准确率达到99.88%,PSNR为31.4 dB,置信度为0.995,确保了可靠、高保真的FSO数据识别。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Accurate mode classification and image transmission via optimized deformable triple graph convolution network in fractional spatial mode optical communication
Free-space optical (FSO) communication systems leveraging spatial-mode multiplexing offer high-capacity, low-interference data transmission, but existing methods often struggle with accurately classifying closely spaced fractional spatial modes due to limitations in feature representation, neighborhood modeling, and noise sensitivity. To overcome these challenges, this work proposes a novel Deformable Triple Attention Graph Convolutional Network with Dollmaker Optimization Algorithm (DTAGCN-DOA) for robust mode classification and high-resolution recognition of fractional Bessel-Gaussian (BG) beam-encoded data. Fractional BG beams are generated using a He–Ne laser modulated via a Spatial Light Modulator (SLM), encoding 8-bit digital symbols into structured spatial modes. A total of 51,200 beam intensity images, each corresponding to unique combinations of radial wave number and fractional orbital angular momentum, are collected and preprocessed using Masked Joint Bilateral Filtering (MJBF) to suppress noise while preserving fine spatial features. Feature extraction is conducted via a Boundary-Enhanced Patch-Merging Transformer (BEPMT), combining global semantics and boundary details. The proposed DTAGCN-DOA framework classifies fractional spatial modes using deformable graph convolutions and triple attention mechanisms, with hyperparameters optimized via the DOA. Grayscale images are encoded into 15,000 spatial modes, transmitted optically, and decoded using the trained model. It achieves 99.88 % accuracy, 31.4 dB PSNR, and 0.995 confidence, ensuring reliable, high-fidelity FSO data recognition.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Optics Communications
Optics Communications 物理-光学
CiteScore
5.10
自引率
8.30%
发文量
681
审稿时长
38 days
期刊介绍: Optics Communications invites original and timely contributions containing new results in various fields of optics and photonics. The journal considers theoretical and experimental research in areas ranging from the fundamental properties of light to technological applications. Topics covered include classical and quantum optics, optical physics and light-matter interactions, lasers, imaging, guided-wave optics and optical information processing. Manuscripts should offer clear evidence of novelty and significance. Papers concentrating on mathematical and computational issues, with limited connection to optics, are not suitable for publication in the Journal. Similarly, small technical advances, or papers concerned only with engineering applications or issues of materials science fall outside the journal scope.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信