{"title":"铁和铁碳化物表面依赖的CO2和CO活化:来自密度泛函理论的见解","authors":"Athira P , Robert Güttel , Koustuv Ray","doi":"10.1016/j.susc.2025.122855","DOIUrl":null,"url":null,"abstract":"<div><div>Conventionally, iron catalysts produce a variety of <em>in-situ</em> carbides, which are sometimes identified as the active phase in CO<sub>2</sub> and CO hydrogenation, Reverse water gas shift (RWGS) and Fischer–Tropsch synthesis (FTS) reactions. However, the key questions arise towards the role of surface Fe and C atoms of iron carbides towards CO<sub>2</sub> and CO activation. Spin-polarised Density Functional Theory (DFT) calculations performed on Fe metal and Fe-C-terminated surfaces of <em>η</em>-Fe<sub>2</sub>C, <em>θ</em>-Fe<sub>3</sub>C, and <em>χ</em>-Fe<sub>5</sub>C<sub>2</sub> iron carbides reveal that, (i) surface carbon brings more stability to Fe-C-terminated surfaces compared to Fe-terminated iron carbides and metallic iron, (ii) Fe-terminated iron carbides and metallic iron are more conducive towards the exothermic CO<sub>2</sub>, CO adsorption than the Fe-C-terminated iron carbides. Moreover, electronic structure analysis unveils that Fe-C-terminated surfaces are comparatively less reactive due to the occurrence of the d-band center very far from the Fermi Level. Furthermore, moderately stable Fe(110) is found as the most preferred surface, favouring direct dissociation of both CO<sub>2</sub> and CO kinetically and thermodynamically compared to all carbides considered. Overall, this study systematically analysed the role of surface energy, termination, surface Fe/C ratio, and surface C atom in iron carbides on the activation of CO<sub>2</sub> and CO.</div></div>","PeriodicalId":22100,"journal":{"name":"Surface Science","volume":"763 ","pages":"Article 122855"},"PeriodicalIF":1.8000,"publicationDate":"2025-09-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Surface-dependent CO2 and CO activation on iron and iron carbides: Insights from density functional theory\",\"authors\":\"Athira P , Robert Güttel , Koustuv Ray\",\"doi\":\"10.1016/j.susc.2025.122855\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Conventionally, iron catalysts produce a variety of <em>in-situ</em> carbides, which are sometimes identified as the active phase in CO<sub>2</sub> and CO hydrogenation, Reverse water gas shift (RWGS) and Fischer–Tropsch synthesis (FTS) reactions. However, the key questions arise towards the role of surface Fe and C atoms of iron carbides towards CO<sub>2</sub> and CO activation. Spin-polarised Density Functional Theory (DFT) calculations performed on Fe metal and Fe-C-terminated surfaces of <em>η</em>-Fe<sub>2</sub>C, <em>θ</em>-Fe<sub>3</sub>C, and <em>χ</em>-Fe<sub>5</sub>C<sub>2</sub> iron carbides reveal that, (i) surface carbon brings more stability to Fe-C-terminated surfaces compared to Fe-terminated iron carbides and metallic iron, (ii) Fe-terminated iron carbides and metallic iron are more conducive towards the exothermic CO<sub>2</sub>, CO adsorption than the Fe-C-terminated iron carbides. Moreover, electronic structure analysis unveils that Fe-C-terminated surfaces are comparatively less reactive due to the occurrence of the d-band center very far from the Fermi Level. Furthermore, moderately stable Fe(110) is found as the most preferred surface, favouring direct dissociation of both CO<sub>2</sub> and CO kinetically and thermodynamically compared to all carbides considered. Overall, this study systematically analysed the role of surface energy, termination, surface Fe/C ratio, and surface C atom in iron carbides on the activation of CO<sub>2</sub> and CO.</div></div>\",\"PeriodicalId\":22100,\"journal\":{\"name\":\"Surface Science\",\"volume\":\"763 \",\"pages\":\"Article 122855\"},\"PeriodicalIF\":1.8000,\"publicationDate\":\"2025-09-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Surface Science\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S003960282500161X\",\"RegionNum\":4,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Surface Science","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S003960282500161X","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
Surface-dependent CO2 and CO activation on iron and iron carbides: Insights from density functional theory
Conventionally, iron catalysts produce a variety of in-situ carbides, which are sometimes identified as the active phase in CO2 and CO hydrogenation, Reverse water gas shift (RWGS) and Fischer–Tropsch synthesis (FTS) reactions. However, the key questions arise towards the role of surface Fe and C atoms of iron carbides towards CO2 and CO activation. Spin-polarised Density Functional Theory (DFT) calculations performed on Fe metal and Fe-C-terminated surfaces of η-Fe2C, θ-Fe3C, and χ-Fe5C2 iron carbides reveal that, (i) surface carbon brings more stability to Fe-C-terminated surfaces compared to Fe-terminated iron carbides and metallic iron, (ii) Fe-terminated iron carbides and metallic iron are more conducive towards the exothermic CO2, CO adsorption than the Fe-C-terminated iron carbides. Moreover, electronic structure analysis unveils that Fe-C-terminated surfaces are comparatively less reactive due to the occurrence of the d-band center very far from the Fermi Level. Furthermore, moderately stable Fe(110) is found as the most preferred surface, favouring direct dissociation of both CO2 and CO kinetically and thermodynamically compared to all carbides considered. Overall, this study systematically analysed the role of surface energy, termination, surface Fe/C ratio, and surface C atom in iron carbides on the activation of CO2 and CO.
期刊介绍:
Surface Science is devoted to elucidating the fundamental aspects of chemistry and physics occurring at a wide range of surfaces and interfaces and to disseminating this knowledge fast. The journal welcomes a broad spectrum of topics, including but not limited to:
• model systems (e.g. in Ultra High Vacuum) under well-controlled reactive conditions
• nanoscale science and engineering, including manipulation of matter at the atomic/molecular scale and assembly phenomena
• reactivity of surfaces as related to various applied areas including heterogeneous catalysis, chemistry at electrified interfaces, and semiconductors functionalization
• phenomena at interfaces relevant to energy storage and conversion, and fuels production and utilization
• surface reactivity for environmental protection and pollution remediation
• interactions at surfaces of soft matter, including polymers and biomaterials.
Both experimental and theoretical work, including modeling, is within the scope of the journal. Work published in Surface Science reaches a wide readership, from chemistry and physics to biology and materials science and engineering, providing an excellent forum for cross-fertilization of ideas and broad dissemination of scientific discoveries.