一类谱测度及其谱特征值

IF 1.2 3区 数学 Q1 MATHEMATICS
Yan-Song Fu, Tiantian Li
{"title":"一类谱测度及其谱特征值","authors":"Yan-Song Fu,&nbsp;Tiantian Li","doi":"10.1016/j.jmaa.2025.130079","DOIUrl":null,"url":null,"abstract":"<div><div>In this paper we will investigate the harmonic analysis of a class of infinite convolutions <em>μ</em> on <span><math><mi>R</mi></math></span>. A necessary and sufficient condition for the Hilbert space <span><math><msup><mrow><mi>L</mi></mrow><mrow><mn>2</mn></mrow></msup><mo>(</mo><mi>μ</mi><mo>)</mo></math></span> has an orthonormal basis of exponential functions is given. Moreover, we give a complete characterization on the spectral eigenvalues of the spectral measure <em>μ</em>, that is, to find all real numbers <em>p</em> which corresponds to a discrete set Λ such that the sets <span><math><mo>{</mo><msup><mrow><mi>e</mi></mrow><mrow><mn>2</mn><mi>π</mi><mi>i</mi><mi>λ</mi><mi>x</mi></mrow></msup><mo>:</mo><mi>λ</mi><mo>∈</mo><mi>Λ</mi><mo>}</mo></math></span> and <span><math><mo>{</mo><msup><mrow><mi>e</mi></mrow><mrow><mn>2</mn><mi>π</mi><mi>i</mi><mi>p</mi><mi>λ</mi><mi>x</mi></mrow></msup><mo>:</mo><mi>λ</mi><mo>∈</mo><mi>Λ</mi><mo>}</mo></math></span> are both orthonormal bases for <span><math><msup><mrow><mi>L</mi></mrow><mrow><mn>2</mn></mrow></msup><mo>(</mo><mi>μ</mi><mo>)</mo></math></span>.</div></div>","PeriodicalId":50147,"journal":{"name":"Journal of Mathematical Analysis and Applications","volume":"555 2","pages":"Article 130079"},"PeriodicalIF":1.2000,"publicationDate":"2025-09-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A class of spectral measures and its spectral eigenvalues\",\"authors\":\"Yan-Song Fu,&nbsp;Tiantian Li\",\"doi\":\"10.1016/j.jmaa.2025.130079\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>In this paper we will investigate the harmonic analysis of a class of infinite convolutions <em>μ</em> on <span><math><mi>R</mi></math></span>. A necessary and sufficient condition for the Hilbert space <span><math><msup><mrow><mi>L</mi></mrow><mrow><mn>2</mn></mrow></msup><mo>(</mo><mi>μ</mi><mo>)</mo></math></span> has an orthonormal basis of exponential functions is given. Moreover, we give a complete characterization on the spectral eigenvalues of the spectral measure <em>μ</em>, that is, to find all real numbers <em>p</em> which corresponds to a discrete set Λ such that the sets <span><math><mo>{</mo><msup><mrow><mi>e</mi></mrow><mrow><mn>2</mn><mi>π</mi><mi>i</mi><mi>λ</mi><mi>x</mi></mrow></msup><mo>:</mo><mi>λ</mi><mo>∈</mo><mi>Λ</mi><mo>}</mo></math></span> and <span><math><mo>{</mo><msup><mrow><mi>e</mi></mrow><mrow><mn>2</mn><mi>π</mi><mi>i</mi><mi>p</mi><mi>λ</mi><mi>x</mi></mrow></msup><mo>:</mo><mi>λ</mi><mo>∈</mo><mi>Λ</mi><mo>}</mo></math></span> are both orthonormal bases for <span><math><msup><mrow><mi>L</mi></mrow><mrow><mn>2</mn></mrow></msup><mo>(</mo><mi>μ</mi><mo>)</mo></math></span>.</div></div>\",\"PeriodicalId\":50147,\"journal\":{\"name\":\"Journal of Mathematical Analysis and Applications\",\"volume\":\"555 2\",\"pages\":\"Article 130079\"},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2025-09-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Mathematical Analysis and Applications\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0022247X25008601\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Mathematical Analysis and Applications","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022247X25008601","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

本文研究了r上一类无限卷积μ的调和分析,给出了Hilbert空间L2(μ)具有指数函数的正交基的充分必要条件。此外,我们给出了谱测度μ的谱特征值的完整刻画,即找到了对应于一个离散集Λ的所有实数p,使得集合{e2π π Λ x: Λ∈Λ}和{e2π π Λ x: Λ∈Λ}都是L2(μ)的正交基。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A class of spectral measures and its spectral eigenvalues
In this paper we will investigate the harmonic analysis of a class of infinite convolutions μ on R. A necessary and sufficient condition for the Hilbert space L2(μ) has an orthonormal basis of exponential functions is given. Moreover, we give a complete characterization on the spectral eigenvalues of the spectral measure μ, that is, to find all real numbers p which corresponds to a discrete set Λ such that the sets {e2πiλx:λΛ} and {e2πipλx:λΛ} are both orthonormal bases for L2(μ).
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
2.50
自引率
7.70%
发文量
790
审稿时长
6 months
期刊介绍: The Journal of Mathematical Analysis and Applications presents papers that treat mathematical analysis and its numerous applications. The journal emphasizes articles devoted to the mathematical treatment of questions arising in physics, chemistry, biology, and engineering, particularly those that stress analytical aspects and novel problems and their solutions. Papers are sought which employ one or more of the following areas of classical analysis: • Analytic number theory • Functional analysis and operator theory • Real and harmonic analysis • Complex analysis • Numerical analysis • Applied mathematics • Partial differential equations • Dynamical systems • Control and Optimization • Probability • Mathematical biology • Combinatorics • Mathematical physics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信