氧化海藻酸盐-明胶纳米复合水凝胶结合MXene纳米片用于3D生物打印

Q1 Computer Science
Lisa Schöbel , Mariya Tulchynska , Elmira Mohajeri , Christian Polley , Hermann Seitz , Jesus Gonzalez-Julian , Aldo R. Boccaccini
{"title":"氧化海藻酸盐-明胶纳米复合水凝胶结合MXene纳米片用于3D生物打印","authors":"Lisa Schöbel ,&nbsp;Mariya Tulchynska ,&nbsp;Elmira Mohajeri ,&nbsp;Christian Polley ,&nbsp;Hermann Seitz ,&nbsp;Jesus Gonzalez-Julian ,&nbsp;Aldo R. Boccaccini","doi":"10.1016/j.bprint.2025.e00440","DOIUrl":null,"url":null,"abstract":"<div><div>Electrically conductive hydrogels (ECHs) and electrical stimulation effectively regulate osteoblast attachment, proliferation, and differentiation, thus triggering bone tissue regeneration. Here, an alginate dialdehyde-gelatin (ADA-GEL) based hydrogel is modified with an electrically conductive and osteogenic 2D nanomaterial, namely MXene, to produce degradable and 3D printable nanocomposite hydrogels exhibiting electrical conductivity. The effect of MXene filler content on resulting hydrogel characteristics such as morphology, mechanical and electrical properties, swelling and degradation behavior was investigated comprehensively. The results indicate tailorable properties depending on MXene concentration, thus opening a library of ADA-GEL-MXene nanocomposite hydrogels. Moreover, the suitability of ADA-GEL-MXene hydrogels for 3D printing of grid-like scaffolds of up to 10 layers was shown. Additional 3D bioprinting studies demonstrated the applicability of the nanocomposite hydrogels as bioinks for 3D bioprinting of MG-63 osteoblast-like cells. Although the electrical conductivity was increased at higher MXene concentrations, compromised cell behavior was observed. This points to the conclusion that the concentration of MXene nanosheets must be carefully chosen depending on the required properties. Taken together, the presented ADA-GEL-MXene composite hydrogels exhibit significant potential for 3D bioprinting in bone tissue engineering and could be employed for the electrical stimulation of bone cells in the future.</div></div>","PeriodicalId":37770,"journal":{"name":"Bioprinting","volume":"51 ","pages":"Article e00440"},"PeriodicalIF":0.0000,"publicationDate":"2025-09-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Oxidized alginate-gelatin nanocomposite hydrogels incorporating MXene nanosheets for 3D bioprinting\",\"authors\":\"Lisa Schöbel ,&nbsp;Mariya Tulchynska ,&nbsp;Elmira Mohajeri ,&nbsp;Christian Polley ,&nbsp;Hermann Seitz ,&nbsp;Jesus Gonzalez-Julian ,&nbsp;Aldo R. Boccaccini\",\"doi\":\"10.1016/j.bprint.2025.e00440\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Electrically conductive hydrogels (ECHs) and electrical stimulation effectively regulate osteoblast attachment, proliferation, and differentiation, thus triggering bone tissue regeneration. Here, an alginate dialdehyde-gelatin (ADA-GEL) based hydrogel is modified with an electrically conductive and osteogenic 2D nanomaterial, namely MXene, to produce degradable and 3D printable nanocomposite hydrogels exhibiting electrical conductivity. The effect of MXene filler content on resulting hydrogel characteristics such as morphology, mechanical and electrical properties, swelling and degradation behavior was investigated comprehensively. The results indicate tailorable properties depending on MXene concentration, thus opening a library of ADA-GEL-MXene nanocomposite hydrogels. Moreover, the suitability of ADA-GEL-MXene hydrogels for 3D printing of grid-like scaffolds of up to 10 layers was shown. Additional 3D bioprinting studies demonstrated the applicability of the nanocomposite hydrogels as bioinks for 3D bioprinting of MG-63 osteoblast-like cells. Although the electrical conductivity was increased at higher MXene concentrations, compromised cell behavior was observed. This points to the conclusion that the concentration of MXene nanosheets must be carefully chosen depending on the required properties. Taken together, the presented ADA-GEL-MXene composite hydrogels exhibit significant potential for 3D bioprinting in bone tissue engineering and could be employed for the electrical stimulation of bone cells in the future.</div></div>\",\"PeriodicalId\":37770,\"journal\":{\"name\":\"Bioprinting\",\"volume\":\"51 \",\"pages\":\"Article e00440\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2025-09-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Bioprinting\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2405886625000569\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"Computer Science\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bioprinting","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2405886625000569","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Computer Science","Score":null,"Total":0}
引用次数: 0

摘要

导电水凝胶(ECHs)和电刺激有效调节成骨细胞附着、增殖和分化,从而引发骨组织再生。在这里,一种海藻酸二醛明胶(ADA-GEL)为基础的水凝胶被一种导电和成骨的2D纳米材料,即MXene修饰,以产生具有导电性的可降解和3D打印的纳米复合水凝胶。研究了MXene填料含量对水凝胶形貌、力学性能、电学性能、溶胀和降解性能的影响。结果表明,根据MXene浓度的不同,ADA-GEL-MXene纳米复合水凝胶具有不同的性能,从而建立了一个数据库。此外,ADA-GEL-MXene水凝胶适合3D打印多达10层的网格状支架。另外的3D生物打印研究证明了纳米复合水凝胶作为MG-63成骨细胞样细胞3D生物打印的生物墨水的适用性。虽然在较高的MXene浓度下电导率增加,但观察到细胞行为受损。这表明,MXene纳米片的浓度必须根据所需的性质仔细选择。综上所述,ADA-GEL-MXene复合水凝胶在骨组织工程的生物3D打印中显示出巨大的潜力,并可在未来用于骨细胞的电刺激。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Oxidized alginate-gelatin nanocomposite hydrogels incorporating MXene nanosheets for 3D bioprinting

Oxidized alginate-gelatin nanocomposite hydrogels incorporating MXene nanosheets for 3D bioprinting
Electrically conductive hydrogels (ECHs) and electrical stimulation effectively regulate osteoblast attachment, proliferation, and differentiation, thus triggering bone tissue regeneration. Here, an alginate dialdehyde-gelatin (ADA-GEL) based hydrogel is modified with an electrically conductive and osteogenic 2D nanomaterial, namely MXene, to produce degradable and 3D printable nanocomposite hydrogels exhibiting electrical conductivity. The effect of MXene filler content on resulting hydrogel characteristics such as morphology, mechanical and electrical properties, swelling and degradation behavior was investigated comprehensively. The results indicate tailorable properties depending on MXene concentration, thus opening a library of ADA-GEL-MXene nanocomposite hydrogels. Moreover, the suitability of ADA-GEL-MXene hydrogels for 3D printing of grid-like scaffolds of up to 10 layers was shown. Additional 3D bioprinting studies demonstrated the applicability of the nanocomposite hydrogels as bioinks for 3D bioprinting of MG-63 osteoblast-like cells. Although the electrical conductivity was increased at higher MXene concentrations, compromised cell behavior was observed. This points to the conclusion that the concentration of MXene nanosheets must be carefully chosen depending on the required properties. Taken together, the presented ADA-GEL-MXene composite hydrogels exhibit significant potential for 3D bioprinting in bone tissue engineering and could be employed for the electrical stimulation of bone cells in the future.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Bioprinting
Bioprinting Computer Science-Computer Science Applications
CiteScore
11.50
自引率
0.00%
发文量
72
审稿时长
68 days
期刊介绍: Bioprinting is a broad-spectrum, multidisciplinary journal that covers all aspects of 3D fabrication technology involving biological tissues, organs and cells for medical and biotechnology applications. Topics covered include nanomaterials, biomaterials, scaffolds, 3D printing technology, imaging and CAD/CAM software and hardware, post-printing bioreactor maturation, cell and biological factor patterning, biofabrication, tissue engineering and other applications of 3D bioprinting technology. Bioprinting publishes research reports describing novel results with high clinical significance in all areas of 3D bioprinting research. Bioprinting issues contain a wide variety of review and analysis articles covering topics relevant to 3D bioprinting ranging from basic biological, material and technical advances to pre-clinical and clinical applications of 3D bioprinting.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信