基于联邦学习的智能电网中fdi的分布式检测与缓解

IF 5 2区 工程技术 Q1 ENGINEERING, ELECTRICAL & ELECTRONIC
Cihat Keçeci , Rachad Atat , Muhammad Ismail , Katherine R. Davis , Erchin Serpedin
{"title":"基于联邦学习的智能电网中fdi的分布式检测与缓解","authors":"Cihat Keçeci ,&nbsp;Rachad Atat ,&nbsp;Muhammad Ismail ,&nbsp;Katherine R. Davis ,&nbsp;Erchin Serpedin","doi":"10.1016/j.ijepes.2025.111126","DOIUrl":null,"url":null,"abstract":"<div><div>Employment of smart meters in power grids avails efficient data analytics and control over the system. However, the transmission of the measurement data over the communication networks may expose the power system to potential cyberattacks. Among these, false data injection attacks (FDIAs) pose a significant threat to the operation of smart grids. In order to tackle the cyberattacks on smart grids, we propose a federated learning-based method for distributed detection and mitigation of FDIAs. Federated learning facilitates distributed training of machine learning-based attack detectors while preserving privacy of sensitive data. The proposed detection method incorporates a graph autoencoder model that exploits the spatial correlations between the power load profiles of the connected network nodes to efficiently mitigate the effects of FDIAs. Extensive simulations using realistic power load profiles combined with the IEEE-57, 118, and 300 bus test cases corroborate the effectiveness of the proposed approach.</div></div>","PeriodicalId":50326,"journal":{"name":"International Journal of Electrical Power & Energy Systems","volume":"172 ","pages":"Article 111126"},"PeriodicalIF":5.0000,"publicationDate":"2025-09-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Distributed detection and mitigation of FDIAs in smart grids via federated learning\",\"authors\":\"Cihat Keçeci ,&nbsp;Rachad Atat ,&nbsp;Muhammad Ismail ,&nbsp;Katherine R. Davis ,&nbsp;Erchin Serpedin\",\"doi\":\"10.1016/j.ijepes.2025.111126\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Employment of smart meters in power grids avails efficient data analytics and control over the system. However, the transmission of the measurement data over the communication networks may expose the power system to potential cyberattacks. Among these, false data injection attacks (FDIAs) pose a significant threat to the operation of smart grids. In order to tackle the cyberattacks on smart grids, we propose a federated learning-based method for distributed detection and mitigation of FDIAs. Federated learning facilitates distributed training of machine learning-based attack detectors while preserving privacy of sensitive data. The proposed detection method incorporates a graph autoencoder model that exploits the spatial correlations between the power load profiles of the connected network nodes to efficiently mitigate the effects of FDIAs. Extensive simulations using realistic power load profiles combined with the IEEE-57, 118, and 300 bus test cases corroborate the effectiveness of the proposed approach.</div></div>\",\"PeriodicalId\":50326,\"journal\":{\"name\":\"International Journal of Electrical Power & Energy Systems\",\"volume\":\"172 \",\"pages\":\"Article 111126\"},\"PeriodicalIF\":5.0000,\"publicationDate\":\"2025-09-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Electrical Power & Energy Systems\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S014206152500674X\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Electrical Power & Energy Systems","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S014206152500674X","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

摘要

在电网中使用智能电表可以对系统进行有效的数据分析和控制。然而,在通信网络上传输测量数据可能会使电力系统暴露于潜在的网络攻击中。其中,虚假数据注入攻击(FDIAs)对智能电网的运行构成了重大威胁。为了解决智能电网上的网络攻击问题,我们提出了一种基于联邦学习的分布式fdia检测和缓解方法。联邦学习促进了基于机器学习的攻击检测器的分布式训练,同时保护了敏感数据的隐私。所提出的检测方法结合了一个图自编码器模型,该模型利用连接网络节点的电力负载分布之间的空间相关性来有效地减轻fdia的影响。结合IEEE-57、118和300总线测试用例,使用真实的电力负载概况进行了广泛的模拟,证实了所提出方法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Distributed detection and mitigation of FDIAs in smart grids via federated learning
Employment of smart meters in power grids avails efficient data analytics and control over the system. However, the transmission of the measurement data over the communication networks may expose the power system to potential cyberattacks. Among these, false data injection attacks (FDIAs) pose a significant threat to the operation of smart grids. In order to tackle the cyberattacks on smart grids, we propose a federated learning-based method for distributed detection and mitigation of FDIAs. Federated learning facilitates distributed training of machine learning-based attack detectors while preserving privacy of sensitive data. The proposed detection method incorporates a graph autoencoder model that exploits the spatial correlations between the power load profiles of the connected network nodes to efficiently mitigate the effects of FDIAs. Extensive simulations using realistic power load profiles combined with the IEEE-57, 118, and 300 bus test cases corroborate the effectiveness of the proposed approach.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
International Journal of Electrical Power & Energy Systems
International Journal of Electrical Power & Energy Systems 工程技术-工程:电子与电气
CiteScore
12.10
自引率
17.30%
发文量
1022
审稿时长
51 days
期刊介绍: The journal covers theoretical developments in electrical power and energy systems and their applications. The coverage embraces: generation and network planning; reliability; long and short term operation; expert systems; neural networks; object oriented systems; system control centres; database and information systems; stock and parameter estimation; system security and adequacy; network theory, modelling and computation; small and large system dynamics; dynamic model identification; on-line control including load and switching control; protection; distribution systems; energy economics; impact of non-conventional systems; and man-machine interfaces. As well as original research papers, the journal publishes short contributions, book reviews and conference reports. All papers are peer-reviewed by at least two referees.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信