大直径浮带硅中包裹体相关脊状断裂

IF 2.9 Q2 MATERIALS SCIENCE, MULTIDISCIPLINARY
Yuanyuan Zuo , Shuai Yuan , Xuefeng Han , Xin Tian , Zhaoshuai Gao , Lingfeng Xu , Hengtao Ge , Peizhi Zhao , Hongfu Jiang , Jinrong Wang , Junfu Ni , Yu Gao , Jianwei Cao , Zhongshi Lou , Wei Sun , Deren Yang
{"title":"大直径浮带硅中包裹体相关脊状断裂","authors":"Yuanyuan Zuo ,&nbsp;Shuai Yuan ,&nbsp;Xuefeng Han ,&nbsp;Xin Tian ,&nbsp;Zhaoshuai Gao ,&nbsp;Lingfeng Xu ,&nbsp;Hengtao Ge ,&nbsp;Peizhi Zhao ,&nbsp;Hongfu Jiang ,&nbsp;Jinrong Wang ,&nbsp;Junfu Ni ,&nbsp;Yu Gao ,&nbsp;Jianwei Cao ,&nbsp;Zhongshi Lou ,&nbsp;Wei Sun ,&nbsp;Deren Yang","doi":"10.1016/j.mtla.2025.102558","DOIUrl":null,"url":null,"abstract":"<div><div>Large-diameter Floating-zone (FZ) silicon, particularly 8-inch crystals, is essential for high-voltage devices like insulated gate bipolar transistors (IGBTs) and fast recovery diodes (FRDs), yet its production is hindered by low crystal growth yield due to ridge breakage defects. This study investigates inclusion-induced ridge breakage mechanisms in mass-produced 8-inch FZ silicon, using 8-inch (100) and 5-inch (111) crystals, with the latter employed to study bulk defect propagation. Through scanning electron microscopy, energy-dispersive spectroscopy, and mechanochemical polishing, we identified two mechanisms: surface-origin carbon inclusions, likely silicon carbide particles from graphite wear at the initial heating stage, induce twin formation, while bulk-origin microcrystalline silicon inclusions trigger dislocations and cracks. Numerical simulations revealed that central and edge high-stress zones amplify inclusion effects, with stress scaling linearly with diameter, exacerbating breakage in 8-inch crystals. A stress-inclusion interaction model explains how inclusions narrow the tolerable stress window. These findings advocate optimizing preform rod preparation and heating processes to minimize inclusions, enhancing yield for 8-inch FZ silicon in high-performance electronics.</div></div>","PeriodicalId":47623,"journal":{"name":"Materialia","volume":"44 ","pages":"Article 102558"},"PeriodicalIF":2.9000,"publicationDate":"2025-09-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Inclusion-related ridge breakage in large-diameter floating-zone silicon\",\"authors\":\"Yuanyuan Zuo ,&nbsp;Shuai Yuan ,&nbsp;Xuefeng Han ,&nbsp;Xin Tian ,&nbsp;Zhaoshuai Gao ,&nbsp;Lingfeng Xu ,&nbsp;Hengtao Ge ,&nbsp;Peizhi Zhao ,&nbsp;Hongfu Jiang ,&nbsp;Jinrong Wang ,&nbsp;Junfu Ni ,&nbsp;Yu Gao ,&nbsp;Jianwei Cao ,&nbsp;Zhongshi Lou ,&nbsp;Wei Sun ,&nbsp;Deren Yang\",\"doi\":\"10.1016/j.mtla.2025.102558\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Large-diameter Floating-zone (FZ) silicon, particularly 8-inch crystals, is essential for high-voltage devices like insulated gate bipolar transistors (IGBTs) and fast recovery diodes (FRDs), yet its production is hindered by low crystal growth yield due to ridge breakage defects. This study investigates inclusion-induced ridge breakage mechanisms in mass-produced 8-inch FZ silicon, using 8-inch (100) and 5-inch (111) crystals, with the latter employed to study bulk defect propagation. Through scanning electron microscopy, energy-dispersive spectroscopy, and mechanochemical polishing, we identified two mechanisms: surface-origin carbon inclusions, likely silicon carbide particles from graphite wear at the initial heating stage, induce twin formation, while bulk-origin microcrystalline silicon inclusions trigger dislocations and cracks. Numerical simulations revealed that central and edge high-stress zones amplify inclusion effects, with stress scaling linearly with diameter, exacerbating breakage in 8-inch crystals. A stress-inclusion interaction model explains how inclusions narrow the tolerable stress window. These findings advocate optimizing preform rod preparation and heating processes to minimize inclusions, enhancing yield for 8-inch FZ silicon in high-performance electronics.</div></div>\",\"PeriodicalId\":47623,\"journal\":{\"name\":\"Materialia\",\"volume\":\"44 \",\"pages\":\"Article 102558\"},\"PeriodicalIF\":2.9000,\"publicationDate\":\"2025-09-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Materialia\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2589152925002261\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materialia","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2589152925002261","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

大直径浮动区(FZ)硅,特别是8英寸晶体,对于绝缘栅双极晶体管(igbt)和快速恢复二极管(frd)等高压器件至关重要,但由于脊断裂缺陷导致晶体生长成品率低,阻碍了其生产。本研究使用8英寸(100)和5英寸(111)晶体研究了量产8英寸FZ硅中夹杂诱导的脊断裂机制,后者用于研究体缺陷传播。通过扫描电子显微镜,能量色散光谱和机械化学抛光,我们确定了两种机制:表面来源的碳夹杂物,可能是在初始加热阶段石墨磨损产生的碳化硅颗粒,诱导孪晶形成,而大块来源的微晶硅夹杂物引发位错和裂纹。数值模拟表明,中央和边缘的高应力区放大了包裹体效应,应力随直径呈线性缩放,加剧了8英寸晶体的破裂。应力-包裹体相互作用模型解释了包裹体如何缩小可容忍应力窗口。这些发现提倡优化预制棒的制备和加热工艺,以最大限度地减少夹杂物,提高高性能电子产品中8英寸FZ硅的产量。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Inclusion-related ridge breakage in large-diameter floating-zone silicon

Inclusion-related ridge breakage in large-diameter floating-zone silicon
Large-diameter Floating-zone (FZ) silicon, particularly 8-inch crystals, is essential for high-voltage devices like insulated gate bipolar transistors (IGBTs) and fast recovery diodes (FRDs), yet its production is hindered by low crystal growth yield due to ridge breakage defects. This study investigates inclusion-induced ridge breakage mechanisms in mass-produced 8-inch FZ silicon, using 8-inch (100) and 5-inch (111) crystals, with the latter employed to study bulk defect propagation. Through scanning electron microscopy, energy-dispersive spectroscopy, and mechanochemical polishing, we identified two mechanisms: surface-origin carbon inclusions, likely silicon carbide particles from graphite wear at the initial heating stage, induce twin formation, while bulk-origin microcrystalline silicon inclusions trigger dislocations and cracks. Numerical simulations revealed that central and edge high-stress zones amplify inclusion effects, with stress scaling linearly with diameter, exacerbating breakage in 8-inch crystals. A stress-inclusion interaction model explains how inclusions narrow the tolerable stress window. These findings advocate optimizing preform rod preparation and heating processes to minimize inclusions, enhancing yield for 8-inch FZ silicon in high-performance electronics.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Materialia
Materialia MATERIALS SCIENCE, MULTIDISCIPLINARY-
CiteScore
6.40
自引率
2.90%
发文量
345
审稿时长
36 days
期刊介绍: Materialia is a multidisciplinary journal of materials science and engineering that publishes original peer-reviewed research articles. Articles in Materialia advance the understanding of the relationship between processing, structure, property, and function of materials. Materialia publishes full-length research articles, review articles, and letters (short communications). In addition to receiving direct submissions, Materialia also accepts transfers from Acta Materialia, Inc. partner journals. Materialia offers authors the choice to publish on an open access model (with author fee), or on a subscription model (with no author fee).
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信