可容许随机坐标下降法的全局收敛性

IF 2.8 2区 数学 Q1 MATHEMATICS, APPLIED
Zhong-Zhi Bai, Yan-Qi Chen
{"title":"可容许随机坐标下降法的全局收敛性","authors":"Zhong-Zhi Bai,&nbsp;Yan-Qi Chen","doi":"10.1016/j.aml.2025.109765","DOIUrl":null,"url":null,"abstract":"<div><div>The admissibly randomized coordinate descent method is an effective iteration solver for computing the smallest eigenpairs of symmetric matrices of very large sizes. This randomized iteration method is, however, only proved to be convergent locally. In this work, we are going to demonstrate its global convergence by proving that it always converges to a certain eigenpair of the target matrix for any normalized initial vector. Hence, the convergence theory of this randomized iteration method is further enriched and completed.</div></div>","PeriodicalId":55497,"journal":{"name":"Applied Mathematics Letters","volume":"173 ","pages":"Article 109765"},"PeriodicalIF":2.8000,"publicationDate":"2025-09-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On global convergence of admissibly randomized coordinate descent method\",\"authors\":\"Zhong-Zhi Bai,&nbsp;Yan-Qi Chen\",\"doi\":\"10.1016/j.aml.2025.109765\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>The admissibly randomized coordinate descent method is an effective iteration solver for computing the smallest eigenpairs of symmetric matrices of very large sizes. This randomized iteration method is, however, only proved to be convergent locally. In this work, we are going to demonstrate its global convergence by proving that it always converges to a certain eigenpair of the target matrix for any normalized initial vector. Hence, the convergence theory of this randomized iteration method is further enriched and completed.</div></div>\",\"PeriodicalId\":55497,\"journal\":{\"name\":\"Applied Mathematics Letters\",\"volume\":\"173 \",\"pages\":\"Article 109765\"},\"PeriodicalIF\":2.8000,\"publicationDate\":\"2025-09-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Applied Mathematics Letters\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0893965925003155\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Mathematics Letters","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0893965925003155","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

摘要

可容许随机坐标下降法是求解超大对称矩阵最小特征对的有效迭代求解方法。然而,这种随机迭代方法仅被证明是局部收敛的。在这项工作中,我们将通过证明它总是收敛于任何归一化初始向量的目标矩阵的某个特征对来证明它的全局收敛性。从而进一步丰富和完善了该随机迭代方法的收敛理论。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
On global convergence of admissibly randomized coordinate descent method
The admissibly randomized coordinate descent method is an effective iteration solver for computing the smallest eigenpairs of symmetric matrices of very large sizes. This randomized iteration method is, however, only proved to be convergent locally. In this work, we are going to demonstrate its global convergence by proving that it always converges to a certain eigenpair of the target matrix for any normalized initial vector. Hence, the convergence theory of this randomized iteration method is further enriched and completed.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Applied Mathematics Letters
Applied Mathematics Letters 数学-应用数学
CiteScore
7.70
自引率
5.40%
发文量
347
审稿时长
10 days
期刊介绍: The purpose of Applied Mathematics Letters is to provide a means of rapid publication for important but brief applied mathematical papers. The brief descriptions of any work involving a novel application or utilization of mathematics, or a development in the methodology of applied mathematics is a potential contribution for this journal. This journal''s focus is on applied mathematics topics based on differential equations and linear algebra. Priority will be given to submissions that are likely to appeal to a wide audience.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信