(3+1)维wazwazi - kaur - boussinesq方程的朗斯基解

IF 2.8 2区 数学 Q1 MATHEMATICS, APPLIED
Tao Xu, Yaonan Shan
{"title":"(3+1)维wazwazi - kaur - boussinesq方程的朗斯基解","authors":"Tao Xu,&nbsp;Yaonan Shan","doi":"10.1016/j.aml.2025.109769","DOIUrl":null,"url":null,"abstract":"<div><div>The (<span><math><mrow><mn>3</mn><mo>+</mo><mn>1</mn></mrow></math></span>)-dimensional Wazwaz–Kaur–Boussinesq equation, which always describe shallow water wave interactions, is researched by the Wronskian technique. To guarantee the Wronskian determinant solves the objective equation in Hirota bilinear form, we construct some sufficient conditions consisting of linear differential equations. Based on the received Wronskian conditions, the general Wronskian solutions can be successfully derived. Choosing the matrix in the Wronskian conditions as diagonal or Jordan forms, three kinds of exact solutions including <span><math><mi>N</mi></math></span>-bright, <span><math><mi>N</mi></math></span>-dark solitons and rational solutions are skillfully reduced from the resulted general solutions.</div></div>","PeriodicalId":55497,"journal":{"name":"Applied Mathematics Letters","volume":"173 ","pages":"Article 109769"},"PeriodicalIF":2.8000,"publicationDate":"2025-09-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Wronskian solutions for the (3+1)-dimensional Wazwaz–Kaur–Boussinesq equation\",\"authors\":\"Tao Xu,&nbsp;Yaonan Shan\",\"doi\":\"10.1016/j.aml.2025.109769\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>The (<span><math><mrow><mn>3</mn><mo>+</mo><mn>1</mn></mrow></math></span>)-dimensional Wazwaz–Kaur–Boussinesq equation, which always describe shallow water wave interactions, is researched by the Wronskian technique. To guarantee the Wronskian determinant solves the objective equation in Hirota bilinear form, we construct some sufficient conditions consisting of linear differential equations. Based on the received Wronskian conditions, the general Wronskian solutions can be successfully derived. Choosing the matrix in the Wronskian conditions as diagonal or Jordan forms, three kinds of exact solutions including <span><math><mi>N</mi></math></span>-bright, <span><math><mi>N</mi></math></span>-dark solitons and rational solutions are skillfully reduced from the resulted general solutions.</div></div>\",\"PeriodicalId\":55497,\"journal\":{\"name\":\"Applied Mathematics Letters\",\"volume\":\"173 \",\"pages\":\"Article 109769\"},\"PeriodicalIF\":2.8000,\"publicationDate\":\"2025-09-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Applied Mathematics Letters\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0893965925003192\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Mathematics Letters","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0893965925003192","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

摘要

利用朗斯基技术研究了通常用来描述浅水波浪相互作用的(3+1)维wazwazi - kaur - boussinesq方程。为了保证朗斯基行列式在Hirota双线性形式下解目标方程,构造了由线性微分方程组成的充分条件。基于所得到的朗斯基行列式条件,可以成功地推导出一般朗斯基行列式解。选择朗斯基条件下的矩阵作为对角形式或约当形式,从得到的一般解中巧妙地化简出三种精确解,包括n个亮孤子、n个暗孤子和有理孤子。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Wronskian solutions for the (3+1)-dimensional Wazwaz–Kaur–Boussinesq equation
The (3+1)-dimensional Wazwaz–Kaur–Boussinesq equation, which always describe shallow water wave interactions, is researched by the Wronskian technique. To guarantee the Wronskian determinant solves the objective equation in Hirota bilinear form, we construct some sufficient conditions consisting of linear differential equations. Based on the received Wronskian conditions, the general Wronskian solutions can be successfully derived. Choosing the matrix in the Wronskian conditions as diagonal or Jordan forms, three kinds of exact solutions including N-bright, N-dark solitons and rational solutions are skillfully reduced from the resulted general solutions.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Applied Mathematics Letters
Applied Mathematics Letters 数学-应用数学
CiteScore
7.70
自引率
5.40%
发文量
347
审稿时长
10 days
期刊介绍: The purpose of Applied Mathematics Letters is to provide a means of rapid publication for important but brief applied mathematical papers. The brief descriptions of any work involving a novel application or utilization of mathematics, or a development in the methodology of applied mathematics is a potential contribution for this journal. This journal''s focus is on applied mathematics topics based on differential equations and linear algebra. Priority will be given to submissions that are likely to appeal to a wide audience.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信