{"title":"可控连续激光岩石加工过程中裂纹演化的研究","authors":"Antash K. Sinha , Shrikrishna N. Joshi","doi":"10.1016/j.gete.2025.100741","DOIUrl":null,"url":null,"abstract":"<div><div>Laser-based rock processing presents a transformative approach for mining, drilling, tunnelling, and geothermal applications by addressing key limitations of conventional mechanical methods, including excessive tool wear and operational inefficiencies. Despite its promise, challenges such as anisotropic rock behaviour, power transmission, formation damage, and instability in subsurface conditions require further investigation. This study examines the effectiveness of continual laser-based rock processing in inducing controlled damage and crack propagation in limestone rock. Distinct stages of rock failure – ranging from pore initiation to fragmentation and segmentation – were identified, revealing a progressive transition from microstructural alteration to macroscopic fracturing. A customized image analysis framework was employed to asses subsurface crack patterns, qualitatively and quantitatively with high fidelity, offering a robust tool for damage quantification. The results underscore the potential of controlled continual laser pulsing as a reliable method for targeted rock disintegration and highlight the role of image-based evaluation in advancing the mechanistic understanding of laser-rock interaction. These findings are expected to contribute positively for the development of next-generation rock-breaking and excavation technologies.</div></div>","PeriodicalId":56008,"journal":{"name":"Geomechanics for Energy and the Environment","volume":"44 ","pages":"Article 100741"},"PeriodicalIF":3.7000,"publicationDate":"2025-09-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Investigations into crack evolution during controlled continual laser-based rock processing\",\"authors\":\"Antash K. Sinha , Shrikrishna N. Joshi\",\"doi\":\"10.1016/j.gete.2025.100741\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Laser-based rock processing presents a transformative approach for mining, drilling, tunnelling, and geothermal applications by addressing key limitations of conventional mechanical methods, including excessive tool wear and operational inefficiencies. Despite its promise, challenges such as anisotropic rock behaviour, power transmission, formation damage, and instability in subsurface conditions require further investigation. This study examines the effectiveness of continual laser-based rock processing in inducing controlled damage and crack propagation in limestone rock. Distinct stages of rock failure – ranging from pore initiation to fragmentation and segmentation – were identified, revealing a progressive transition from microstructural alteration to macroscopic fracturing. A customized image analysis framework was employed to asses subsurface crack patterns, qualitatively and quantitatively with high fidelity, offering a robust tool for damage quantification. The results underscore the potential of controlled continual laser pulsing as a reliable method for targeted rock disintegration and highlight the role of image-based evaluation in advancing the mechanistic understanding of laser-rock interaction. These findings are expected to contribute positively for the development of next-generation rock-breaking and excavation technologies.</div></div>\",\"PeriodicalId\":56008,\"journal\":{\"name\":\"Geomechanics for Energy and the Environment\",\"volume\":\"44 \",\"pages\":\"Article 100741\"},\"PeriodicalIF\":3.7000,\"publicationDate\":\"2025-09-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Geomechanics for Energy and the Environment\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2352380825001066\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENERGY & FUELS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Geomechanics for Energy and the Environment","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2352380825001066","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
Investigations into crack evolution during controlled continual laser-based rock processing
Laser-based rock processing presents a transformative approach for mining, drilling, tunnelling, and geothermal applications by addressing key limitations of conventional mechanical methods, including excessive tool wear and operational inefficiencies. Despite its promise, challenges such as anisotropic rock behaviour, power transmission, formation damage, and instability in subsurface conditions require further investigation. This study examines the effectiveness of continual laser-based rock processing in inducing controlled damage and crack propagation in limestone rock. Distinct stages of rock failure – ranging from pore initiation to fragmentation and segmentation – were identified, revealing a progressive transition from microstructural alteration to macroscopic fracturing. A customized image analysis framework was employed to asses subsurface crack patterns, qualitatively and quantitatively with high fidelity, offering a robust tool for damage quantification. The results underscore the potential of controlled continual laser pulsing as a reliable method for targeted rock disintegration and highlight the role of image-based evaluation in advancing the mechanistic understanding of laser-rock interaction. These findings are expected to contribute positively for the development of next-generation rock-breaking and excavation technologies.
期刊介绍:
The aim of the Journal is to publish research results of the highest quality and of lasting importance on the subject of geomechanics, with the focus on applications to geological energy production and storage, and the interaction of soils and rocks with the natural and engineered environment. Special attention is given to concepts and developments of new energy geotechnologies that comprise intrinsic mechanisms protecting the environment against a potential engineering induced damage, hence warranting sustainable usage of energy resources.
The scope of the journal is broad, including fundamental concepts in geomechanics and mechanics of porous media, the experiments and analysis of novel phenomena and applications. Of special interest are issues resulting from coupling of particular physics, chemistry and biology of external forcings, as well as of pore fluid/gas and minerals to the solid mechanics of the medium skeleton and pore fluid mechanics. The multi-scale and inter-scale interactions between the phenomena and the behavior representations are also of particular interest. Contributions to general theoretical approach to these issues, but of potential reference to geomechanics in its context of energy and the environment are also most welcome.