基于tcad的具有几何工程通道的近红外(NIR)光探测无掺杂TFET光传感器的光学FoM分析

IF 3 Q2 PHYSICS, CONDENSED MATTER
Siva Rama Krishna Gorla , Chinna Baji Shaik , Chandan Kumar Pandey
{"title":"基于tcad的具有几何工程通道的近红外(NIR)光探测无掺杂TFET光传感器的光学FoM分析","authors":"Siva Rama Krishna Gorla ,&nbsp;Chinna Baji Shaik ,&nbsp;Chandan Kumar Pandey","doi":"10.1016/j.micrna.2025.208355","DOIUrl":null,"url":null,"abstract":"<div><div>This work presents a comparative performance analysis of inverted T-shaped channel TFET (IT-DLTFET) and L-shaped channel TFET (L-DLTFET) based photosensors using a doping-less technique, designed for improved optical performance in detecting incident light with closely spaced wavelengths (<span><math><mo>∼</mo></math></span>100 nm) and low luminous intensity (<span><math><mrow><mo>&lt;</mo><mn>0</mn><mo>.</mo><mn>8</mn></mrow></math></span> W/cm<sup>2</sup>) in the near-infrared (NIR) region. Though a photo gate with the same footprint and position is placed near the source–channel (S–C) interface in both devices, differences in their geometrical design result in distinct electrostatics, leading to variations in sensing performance. Key optical figures of merit (FoMs), namely sensitivity (<span><math><msub><mrow><mi>S</mi></mrow><mrow><mi>n</mi></mrow></msub></math></span>), signal-to-noise ratio (SNR), quantum efficiency (<span><math><mi>η</mi></math></span>), and responsivity (<span><math><mi>R</mi></math></span>) are obtained from 2D TCAD simulation results, including transfer characteristics and optical generation contours, over the incident wavelength range of 700–1000 nm. The IT-DLTFET demonstrates superior FoM owing to its inverted T-shaped channel enabled by an elevated top gate and extended back gate, which enhances the tunneling region near the S–C interface. A higher illumination current (<span><math><msub><mrow><mi>I</mi></mrow><mrow><mtext>Light</mtext></mrow></msub></math></span>), improved average subthreshold swing (<span><math><mrow><mi>S</mi><msub><mrow><mi>S</mi></mrow><mrow><mtext>Avg</mtext></mrow></msub></mrow></math></span>), and reduced dark current (<span><math><msub><mrow><mi>I</mi></mrow><mrow><mtext>Dark</mtext></mrow></msub></math></span>) in the IT-DLTFET contribute to a peak <span><math><msub><mrow><mi>S</mi></mrow><mrow><mi>n</mi></mrow></msub></math></span> of <span><math><mo>∼</mo></math></span> 549.75, compared to <span><math><mo>∼</mo></math></span> 276.1 for the L-DLTFET at <span><math><mrow><mi>λ</mi><mo>=</mo><mn>700</mn><mspace></mspace><mi>nm</mi></mrow></math></span>. Moreover, the extended back gate near the drain–channel (D–C) interface improves electrostatic control and carrier confinement, enabling more efficient carrier injection and stronger photocurrent, which enhances the SNR to 89.7 compared to 56.7 in the L-DLTFET. Enhanced tunneling near the S–C interface increases the optical generation rate, improving sensitivity under low-intensity light and significantly boosting SNR, optimizing the device’s performance for on-chip applications. The dual-gate configuration of the IT-DLTFET further strengthens gate control over the elevated channel region, thereby enhancing the local electric field at the S–C interface and improving optical voltage (<span><math><msub><mrow><mi>V</mi></mrow><mrow><mtext>OP</mtext></mrow></msub></math></span>) development. Additionally, IT-DLTFET exhibits higher quantum efficiency (<span><math><mi>η</mi></math></span>), responsivity (<span><math><mi>R</mi></math></span>), and detectivity (<span><math><mi>D</mi></math></span>) even at longer wavelengths (e.g., 1000 nm), due to the enhanced generation of electron–hole pairs (EHPs) under illumination. The impact of interface traps on device performance is also analyzed, revealing that the IT-DLTFET shows better resilience to trap-induced degradation compared to the L-DLTFET.</div></div>","PeriodicalId":100923,"journal":{"name":"Micro and Nanostructures","volume":"208 ","pages":"Article 208355"},"PeriodicalIF":3.0000,"publicationDate":"2025-09-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"TCAD-based optical FoM analysis of doping-less TFET photosensors with geometrically engineered channels for near-infrared (NIR) light detection\",\"authors\":\"Siva Rama Krishna Gorla ,&nbsp;Chinna Baji Shaik ,&nbsp;Chandan Kumar Pandey\",\"doi\":\"10.1016/j.micrna.2025.208355\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>This work presents a comparative performance analysis of inverted T-shaped channel TFET (IT-DLTFET) and L-shaped channel TFET (L-DLTFET) based photosensors using a doping-less technique, designed for improved optical performance in detecting incident light with closely spaced wavelengths (<span><math><mo>∼</mo></math></span>100 nm) and low luminous intensity (<span><math><mrow><mo>&lt;</mo><mn>0</mn><mo>.</mo><mn>8</mn></mrow></math></span> W/cm<sup>2</sup>) in the near-infrared (NIR) region. Though a photo gate with the same footprint and position is placed near the source–channel (S–C) interface in both devices, differences in their geometrical design result in distinct electrostatics, leading to variations in sensing performance. Key optical figures of merit (FoMs), namely sensitivity (<span><math><msub><mrow><mi>S</mi></mrow><mrow><mi>n</mi></mrow></msub></math></span>), signal-to-noise ratio (SNR), quantum efficiency (<span><math><mi>η</mi></math></span>), and responsivity (<span><math><mi>R</mi></math></span>) are obtained from 2D TCAD simulation results, including transfer characteristics and optical generation contours, over the incident wavelength range of 700–1000 nm. The IT-DLTFET demonstrates superior FoM owing to its inverted T-shaped channel enabled by an elevated top gate and extended back gate, which enhances the tunneling region near the S–C interface. A higher illumination current (<span><math><msub><mrow><mi>I</mi></mrow><mrow><mtext>Light</mtext></mrow></msub></math></span>), improved average subthreshold swing (<span><math><mrow><mi>S</mi><msub><mrow><mi>S</mi></mrow><mrow><mtext>Avg</mtext></mrow></msub></mrow></math></span>), and reduced dark current (<span><math><msub><mrow><mi>I</mi></mrow><mrow><mtext>Dark</mtext></mrow></msub></math></span>) in the IT-DLTFET contribute to a peak <span><math><msub><mrow><mi>S</mi></mrow><mrow><mi>n</mi></mrow></msub></math></span> of <span><math><mo>∼</mo></math></span> 549.75, compared to <span><math><mo>∼</mo></math></span> 276.1 for the L-DLTFET at <span><math><mrow><mi>λ</mi><mo>=</mo><mn>700</mn><mspace></mspace><mi>nm</mi></mrow></math></span>. Moreover, the extended back gate near the drain–channel (D–C) interface improves electrostatic control and carrier confinement, enabling more efficient carrier injection and stronger photocurrent, which enhances the SNR to 89.7 compared to 56.7 in the L-DLTFET. Enhanced tunneling near the S–C interface increases the optical generation rate, improving sensitivity under low-intensity light and significantly boosting SNR, optimizing the device’s performance for on-chip applications. The dual-gate configuration of the IT-DLTFET further strengthens gate control over the elevated channel region, thereby enhancing the local electric field at the S–C interface and improving optical voltage (<span><math><msub><mrow><mi>V</mi></mrow><mrow><mtext>OP</mtext></mrow></msub></math></span>) development. Additionally, IT-DLTFET exhibits higher quantum efficiency (<span><math><mi>η</mi></math></span>), responsivity (<span><math><mi>R</mi></math></span>), and detectivity (<span><math><mi>D</mi></math></span>) even at longer wavelengths (e.g., 1000 nm), due to the enhanced generation of electron–hole pairs (EHPs) under illumination. The impact of interface traps on device performance is also analyzed, revealing that the IT-DLTFET shows better resilience to trap-induced degradation compared to the L-DLTFET.</div></div>\",\"PeriodicalId\":100923,\"journal\":{\"name\":\"Micro and Nanostructures\",\"volume\":\"208 \",\"pages\":\"Article 208355\"},\"PeriodicalIF\":3.0000,\"publicationDate\":\"2025-09-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Micro and Nanostructures\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2773012325002845\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"PHYSICS, CONDENSED MATTER\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Micro and Nanostructures","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2773012325002845","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, CONDENSED MATTER","Score":null,"Total":0}
引用次数: 0

摘要

这项工作介绍了使用无掺杂技术的倒t形通道TFET (IT-DLTFET)和基于l形通道TFET (L-DLTFET)的光敏传感器的性能比较分析,该技术旨在提高光学性能,以检测近红外(NIR)区域具有紧密间隔波长(~ 100 nm)和低发光强度(<0.8 W/cm2)的入射光。尽管在两种器件的源通道(S-C)接口附近放置了具有相同占地面积和位置的光门,但其几何设计的差异导致了不同的静电,从而导致传感性能的变化。在700 ~ 1000 nm入射波长范围内,从二维TCAD仿真结果中获得了关键的光学参量,即灵敏度(Sn)、信噪比(SNR)、量子效率(η)和响应率(R),包括传输特性和光生成轮廓。IT-DLTFET通过抬高顶栅极和延长后栅极实现倒t型沟道,增强了S-C接口附近的隧穿区,从而表现出优异的FoM。较高的照明电流(ILight)、改善的平均亚阈值摆幅(SSAvg)和降低的暗电流(IDark)使得IT-DLTFET在λ=700nm处的峰值Sn为~ 549.75,而L-DLTFET的峰值Sn为~ 276.1。此外,在漏极沟道(D-C)界面附近的扩展后门改善了静电控制和载流子约束,实现了更有效的载流子注入和更强的光电流,将信噪比从L-DLTFET的56.7提高到89.7。S-C接口附近增强的隧道效应提高了光的产生速率,提高了低强光下的灵敏度,显著提高了信噪比,优化了器件的片上应用性能。IT-DLTFET的双栅极结构进一步加强了对高架通道区域的栅极控制,从而增强了S-C接口处的局部电场并改善了光电压(VOP)的发展。此外,即使在更长的波长(例如1000 nm)下,IT-DLTFET也表现出更高的量子效率(η),响应率(R)和探测率(D),这是由于在照明下电子-空穴对(EHPs)的增强产生。还分析了界面陷阱对器件性能的影响,揭示了与L-DLTFET相比,IT-DLTFET对陷阱诱导的退化表现出更好的弹性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
TCAD-based optical FoM analysis of doping-less TFET photosensors with geometrically engineered channels for near-infrared (NIR) light detection
This work presents a comparative performance analysis of inverted T-shaped channel TFET (IT-DLTFET) and L-shaped channel TFET (L-DLTFET) based photosensors using a doping-less technique, designed for improved optical performance in detecting incident light with closely spaced wavelengths (100 nm) and low luminous intensity (<0.8 W/cm2) in the near-infrared (NIR) region. Though a photo gate with the same footprint and position is placed near the source–channel (S–C) interface in both devices, differences in their geometrical design result in distinct electrostatics, leading to variations in sensing performance. Key optical figures of merit (FoMs), namely sensitivity (Sn), signal-to-noise ratio (SNR), quantum efficiency (η), and responsivity (R) are obtained from 2D TCAD simulation results, including transfer characteristics and optical generation contours, over the incident wavelength range of 700–1000 nm. The IT-DLTFET demonstrates superior FoM owing to its inverted T-shaped channel enabled by an elevated top gate and extended back gate, which enhances the tunneling region near the S–C interface. A higher illumination current (ILight), improved average subthreshold swing (SSAvg), and reduced dark current (IDark) in the IT-DLTFET contribute to a peak Sn of 549.75, compared to 276.1 for the L-DLTFET at λ=700nm. Moreover, the extended back gate near the drain–channel (D–C) interface improves electrostatic control and carrier confinement, enabling more efficient carrier injection and stronger photocurrent, which enhances the SNR to 89.7 compared to 56.7 in the L-DLTFET. Enhanced tunneling near the S–C interface increases the optical generation rate, improving sensitivity under low-intensity light and significantly boosting SNR, optimizing the device’s performance for on-chip applications. The dual-gate configuration of the IT-DLTFET further strengthens gate control over the elevated channel region, thereby enhancing the local electric field at the S–C interface and improving optical voltage (VOP) development. Additionally, IT-DLTFET exhibits higher quantum efficiency (η), responsivity (R), and detectivity (D) even at longer wavelengths (e.g., 1000 nm), due to the enhanced generation of electron–hole pairs (EHPs) under illumination. The impact of interface traps on device performance is also analyzed, revealing that the IT-DLTFET shows better resilience to trap-induced degradation compared to the L-DLTFET.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
6.50
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信