基于时间卷积网络和交叉关注的无人机传感器异常检测方法

IF 7.6 3区 计算机科学 Q1 COMPUTER SCIENCE, INFORMATION SYSTEMS
Bo Wu , Chengzi Zhou , Yanxi Liu , Peng Xiao , Wei Zheng
{"title":"基于时间卷积网络和交叉关注的无人机传感器异常检测方法","authors":"Bo Wu ,&nbsp;Chengzi Zhou ,&nbsp;Yanxi Liu ,&nbsp;Peng Xiao ,&nbsp;Wei Zheng","doi":"10.1016/j.iot.2025.101760","DOIUrl":null,"url":null,"abstract":"<div><div>To address the issues of severe high-dimensional redundancy and interference in UAV sensor data, insufficient ability to model temporal dependencies, and anomaly decisions relying on fixed empirical thresholds, this paper proposes a lightweight anomaly detection framework called DCATCN (Dual Cross-Attention Temporal Convolutional Network) based on a bidirectional temporal convolutional network (BiTCN) and a Cross-Attention mechanism. First, the method uses the Maximal Information Coefficient (MIC) to adaptively select a feature subset that is highly correlated with target anomalies, effectively reducing data redundancy; then it constructs a bidirectional temporal convolutional network to extract forward and backward features of the time series data in parallel, introducing a Cross-Attention mechanism to dynamically integrate bidirectional information and enhance the model’s representation of temporal dependencies; finally, it employs Extreme Value Theory to statistically model the prediction residuals and determine the anomaly decision threshold, achieving robust and reliable anomaly detection. Comprehensive experiments on the public ThorFlight93 dataset demonstrate that this method outperforms various mainstream models in both detection accuracy and computational efficiency, showcasing strong potential for engineering applications. Code release: <span><span>https://github.com/ZCchou/DCATCN.git</span><svg><path></path></svg></span></div></div>","PeriodicalId":29968,"journal":{"name":"Internet of Things","volume":"34 ","pages":"Article 101760"},"PeriodicalIF":7.6000,"publicationDate":"2025-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"DCATCN: A temporal convolutional network and cross-attention based UAV sensor anomaly detection method\",\"authors\":\"Bo Wu ,&nbsp;Chengzi Zhou ,&nbsp;Yanxi Liu ,&nbsp;Peng Xiao ,&nbsp;Wei Zheng\",\"doi\":\"10.1016/j.iot.2025.101760\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>To address the issues of severe high-dimensional redundancy and interference in UAV sensor data, insufficient ability to model temporal dependencies, and anomaly decisions relying on fixed empirical thresholds, this paper proposes a lightweight anomaly detection framework called DCATCN (Dual Cross-Attention Temporal Convolutional Network) based on a bidirectional temporal convolutional network (BiTCN) and a Cross-Attention mechanism. First, the method uses the Maximal Information Coefficient (MIC) to adaptively select a feature subset that is highly correlated with target anomalies, effectively reducing data redundancy; then it constructs a bidirectional temporal convolutional network to extract forward and backward features of the time series data in parallel, introducing a Cross-Attention mechanism to dynamically integrate bidirectional information and enhance the model’s representation of temporal dependencies; finally, it employs Extreme Value Theory to statistically model the prediction residuals and determine the anomaly decision threshold, achieving robust and reliable anomaly detection. Comprehensive experiments on the public ThorFlight93 dataset demonstrate that this method outperforms various mainstream models in both detection accuracy and computational efficiency, showcasing strong potential for engineering applications. Code release: <span><span>https://github.com/ZCchou/DCATCN.git</span><svg><path></path></svg></span></div></div>\",\"PeriodicalId\":29968,\"journal\":{\"name\":\"Internet of Things\",\"volume\":\"34 \",\"pages\":\"Article 101760\"},\"PeriodicalIF\":7.6000,\"publicationDate\":\"2025-09-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Internet of Things\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2542660525002732\",\"RegionNum\":3,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, INFORMATION SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Internet of Things","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2542660525002732","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0

摘要

针对无人机传感器数据存在严重的高维冗余和干扰、时间依赖性建模能力不足以及依赖固定经验阈值进行异常决策等问题,本文提出了一种基于双向时间卷积网络(BiTCN)和交叉注意机制的轻型异常检测框架DCATCN (Dual Cross-Attention temporal Convolutional Network)。首先,该方法利用最大信息系数(MIC)自适应选择与目标异常高度相关的特征子集,有效减少数据冗余;然后构建双向时间卷积网络,并行提取时间序列数据的前向和后向特征,引入交叉注意机制,动态整合双向信息,增强模型对时间依赖性的表征;最后,利用极值理论对预测残差进行统计建模,确定异常决策阈值,实现鲁棒可靠的异常检测。在ThorFlight93公共数据集上的综合实验表明,该方法在检测精度和计算效率方面都优于各种主流模型,具有很强的工程应用潜力。代码发布:https://github.com/ZCchou/DCATCN.git
本文章由计算机程序翻译,如有差异,请以英文原文为准。
DCATCN: A temporal convolutional network and cross-attention based UAV sensor anomaly detection method
To address the issues of severe high-dimensional redundancy and interference in UAV sensor data, insufficient ability to model temporal dependencies, and anomaly decisions relying on fixed empirical thresholds, this paper proposes a lightweight anomaly detection framework called DCATCN (Dual Cross-Attention Temporal Convolutional Network) based on a bidirectional temporal convolutional network (BiTCN) and a Cross-Attention mechanism. First, the method uses the Maximal Information Coefficient (MIC) to adaptively select a feature subset that is highly correlated with target anomalies, effectively reducing data redundancy; then it constructs a bidirectional temporal convolutional network to extract forward and backward features of the time series data in parallel, introducing a Cross-Attention mechanism to dynamically integrate bidirectional information and enhance the model’s representation of temporal dependencies; finally, it employs Extreme Value Theory to statistically model the prediction residuals and determine the anomaly decision threshold, achieving robust and reliable anomaly detection. Comprehensive experiments on the public ThorFlight93 dataset demonstrate that this method outperforms various mainstream models in both detection accuracy and computational efficiency, showcasing strong potential for engineering applications. Code release: https://github.com/ZCchou/DCATCN.git
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Internet of Things
Internet of Things Multiple-
CiteScore
3.60
自引率
5.10%
发文量
115
审稿时长
37 days
期刊介绍: Internet of Things; Engineering Cyber Physical Human Systems is a comprehensive journal encouraging cross collaboration between researchers, engineers and practitioners in the field of IoT & Cyber Physical Human Systems. The journal offers a unique platform to exchange scientific information on the entire breadth of technology, science, and societal applications of the IoT. The journal will place a high priority on timely publication, and provide a home for high quality. Furthermore, IOT is interested in publishing topical Special Issues on any aspect of IOT.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信