高温高压下fcc-Fe和fcc-Fe - si合金的弹性波速和密度

IF 1.9 3区 地球科学 Q2 GEOCHEMISTRY & GEOPHYSICS
Masaya Kumagai , Tatsuya Sakamaki , Osamu Ikeda , Sho Kakizawa , Noriyoshi Tsujino , Yuji Higo , Akio Suzuki
{"title":"高温高压下fcc-Fe和fcc-Fe - si合金的弹性波速和密度","authors":"Masaya Kumagai ,&nbsp;Tatsuya Sakamaki ,&nbsp;Osamu Ikeda ,&nbsp;Sho Kakizawa ,&nbsp;Noriyoshi Tsujino ,&nbsp;Yuji Higo ,&nbsp;Akio Suzuki","doi":"10.1016/j.pepi.2025.107455","DOIUrl":null,"url":null,"abstract":"<div><div>The solid cores of moderate-sized terrestrial planets are hypothesized to comprise face-centered cubic (<em>fcc</em>) Fe<img>Si alloys, making it essential to understand the elastic properties of these materials under extreme conditions (high temperatures and pressures) for constraining planetary core compositions. However, there are few studies on the elastic properties of <em>fcc</em>-Fe–Si alloys. We report comprehensive measurements of longitudinal elastic wave velocities (<em>V</em><sub>P</sub>) and densities (<em>ρ</em>) for <em>fcc</em>-Fe and <em>fcc</em>-Fe–5Si (5 wt% Si) alloys at pressures up to 15 GPa and temperatures to 1700 K, utilizing simultaneous in situ ultrasonic measurements, X-ray radiography, and X-ray diffraction techniques. Our findings reveal that the <em>V</em><sub>P</sub> difference between pure Fe and Fe<img>5Si was minimal at 6–8 GPa but diverged significantly at 12–14 GPa, demonstrating that Si incorporation increases the pressure dependence of <em>V</em><sub>P</sub>. Linear regression of <em>V</em><sub>P</sub>–<em>ρ</em> relationships yielded distinct equations for <em>fcc</em>-Fe (<em>V</em><sub>P</sub> [m/s] = 1.35(16) × <em>ρ</em> [kg/m<sup>3</sup>] − 5.3(14) × 10<sup>3</sup>) and <em>fcc</em>-Fe–5Si (<em>V</em><sub>P</sub> [m/s] = 2.09(17) × <em>ρ</em> [kg/m<sup>3</sup>] − 10.6(13) × 10<sup>3</sup>). Critically, although the <em>V</em><sub>P</sub> of the <em>fcc</em>-Fe–5Si alloy closely matched Interior Exploration using Seismic Investigations, Geodesy, and Heat Transport mission predictions for the Martian inner core, its density exceeded observational constraints by 800–1000 kg/m<sup>3</sup>. This discrepancy suggests the presence of additional light elements—potentially H—that could reduce density without substantially modifying elastic wave velocities, providing a novel constraint on Martian core composition.</div></div>","PeriodicalId":54614,"journal":{"name":"Physics of the Earth and Planetary Interiors","volume":"368 ","pages":"Article 107455"},"PeriodicalIF":1.9000,"publicationDate":"2025-09-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Elastic wave velocity and density of fcc-Fe and fcc-Fe–Si alloys at high pressures and temperatures\",\"authors\":\"Masaya Kumagai ,&nbsp;Tatsuya Sakamaki ,&nbsp;Osamu Ikeda ,&nbsp;Sho Kakizawa ,&nbsp;Noriyoshi Tsujino ,&nbsp;Yuji Higo ,&nbsp;Akio Suzuki\",\"doi\":\"10.1016/j.pepi.2025.107455\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>The solid cores of moderate-sized terrestrial planets are hypothesized to comprise face-centered cubic (<em>fcc</em>) Fe<img>Si alloys, making it essential to understand the elastic properties of these materials under extreme conditions (high temperatures and pressures) for constraining planetary core compositions. However, there are few studies on the elastic properties of <em>fcc</em>-Fe–Si alloys. We report comprehensive measurements of longitudinal elastic wave velocities (<em>V</em><sub>P</sub>) and densities (<em>ρ</em>) for <em>fcc</em>-Fe and <em>fcc</em>-Fe–5Si (5 wt% Si) alloys at pressures up to 15 GPa and temperatures to 1700 K, utilizing simultaneous in situ ultrasonic measurements, X-ray radiography, and X-ray diffraction techniques. Our findings reveal that the <em>V</em><sub>P</sub> difference between pure Fe and Fe<img>5Si was minimal at 6–8 GPa but diverged significantly at 12–14 GPa, demonstrating that Si incorporation increases the pressure dependence of <em>V</em><sub>P</sub>. Linear regression of <em>V</em><sub>P</sub>–<em>ρ</em> relationships yielded distinct equations for <em>fcc</em>-Fe (<em>V</em><sub>P</sub> [m/s] = 1.35(16) × <em>ρ</em> [kg/m<sup>3</sup>] − 5.3(14) × 10<sup>3</sup>) and <em>fcc</em>-Fe–5Si (<em>V</em><sub>P</sub> [m/s] = 2.09(17) × <em>ρ</em> [kg/m<sup>3</sup>] − 10.6(13) × 10<sup>3</sup>). Critically, although the <em>V</em><sub>P</sub> of the <em>fcc</em>-Fe–5Si alloy closely matched Interior Exploration using Seismic Investigations, Geodesy, and Heat Transport mission predictions for the Martian inner core, its density exceeded observational constraints by 800–1000 kg/m<sup>3</sup>. This discrepancy suggests the presence of additional light elements—potentially H—that could reduce density without substantially modifying elastic wave velocities, providing a novel constraint on Martian core composition.</div></div>\",\"PeriodicalId\":54614,\"journal\":{\"name\":\"Physics of the Earth and Planetary Interiors\",\"volume\":\"368 \",\"pages\":\"Article 107455\"},\"PeriodicalIF\":1.9000,\"publicationDate\":\"2025-09-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Physics of the Earth and Planetary Interiors\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0031920125001499\",\"RegionNum\":3,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"GEOCHEMISTRY & GEOPHYSICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physics of the Earth and Planetary Interiors","FirstCategoryId":"89","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0031920125001499","RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"GEOCHEMISTRY & GEOPHYSICS","Score":null,"Total":0}
引用次数: 0

摘要

假设中等大小的类地行星的固体核心由面心立方(fcc) FeSi合金组成,这使得了解这些材料在极端条件下(高温高压)的弹性特性对于限制行星核心成分至关重要。然而,对fcc-Fe-Si合金弹性性能的研究却很少。我们报告了fcc-Fe和fcc-Fe - 5si (5wt % Si)合金的纵向弹性波速(VP)和密度(ρ)在压力高达15 GPa和温度至1700 K下的综合测量,利用同步原位超声测量,x射线照相和x射线衍射技术。我们的研究结果表明,纯Fe和Fe5Si之间的VP差异在6-8 GPa时最小,但在12-14 GPa时差异显著,表明Si掺入增加了VP的压力依赖性。VP -ρ的线性回归关系产生不同的方程fcc-Fe (VP (m / s) = 1.35(16)×ρ(公斤/立方米)−5.3(14)×103)和fcc-Fe-5Si (VP (m / s) = 2.09(17)×ρ(公斤/立方米)−10.6(13)×103)。关键的是,尽管fcc-Fe-5Si合金的VP与利用地震调查、大地测量学和热传输任务对火星内核的预测非常吻合,但其密度超出了观测限制800-1000 kg/m3。这种差异表明,存在额外的轻元素——可能是氢元素——可以在不实质性改变弹性波速的情况下降低密度,从而为火星核心组成提供了一种新的限制。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Elastic wave velocity and density of fcc-Fe and fcc-Fe–Si alloys at high pressures and temperatures

Elastic wave velocity and density of fcc-Fe and fcc-Fe–Si alloys at high pressures and temperatures
The solid cores of moderate-sized terrestrial planets are hypothesized to comprise face-centered cubic (fcc) FeSi alloys, making it essential to understand the elastic properties of these materials under extreme conditions (high temperatures and pressures) for constraining planetary core compositions. However, there are few studies on the elastic properties of fcc-Fe–Si alloys. We report comprehensive measurements of longitudinal elastic wave velocities (VP) and densities (ρ) for fcc-Fe and fcc-Fe–5Si (5 wt% Si) alloys at pressures up to 15 GPa and temperatures to 1700 K, utilizing simultaneous in situ ultrasonic measurements, X-ray radiography, and X-ray diffraction techniques. Our findings reveal that the VP difference between pure Fe and Fe5Si was minimal at 6–8 GPa but diverged significantly at 12–14 GPa, demonstrating that Si incorporation increases the pressure dependence of VP. Linear regression of VPρ relationships yielded distinct equations for fcc-Fe (VP [m/s] = 1.35(16) × ρ [kg/m3] − 5.3(14) × 103) and fcc-Fe–5Si (VP [m/s] = 2.09(17) × ρ [kg/m3] − 10.6(13) × 103). Critically, although the VP of the fcc-Fe–5Si alloy closely matched Interior Exploration using Seismic Investigations, Geodesy, and Heat Transport mission predictions for the Martian inner core, its density exceeded observational constraints by 800–1000 kg/m3. This discrepancy suggests the presence of additional light elements—potentially H—that could reduce density without substantially modifying elastic wave velocities, providing a novel constraint on Martian core composition.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Physics of the Earth and Planetary Interiors
Physics of the Earth and Planetary Interiors 地学天文-地球化学与地球物理
CiteScore
5.00
自引率
4.30%
发文量
78
审稿时长
18.5 weeks
期刊介绍: Launched in 1968 to fill the need for an international journal in the field of planetary physics, geodesy and geophysics, Physics of the Earth and Planetary Interiors has now grown to become important reading matter for all geophysicists. It is the only journal to be entirely devoted to the physical and chemical processes of planetary interiors. Original research papers, review articles, short communications and book reviews are all published on a regular basis; and from time to time special issues of the journal are devoted to the publication of the proceedings of symposia and congresses which the editors feel will be of particular interest to the reader.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信