热像温度梯度分析通过变形变压器残差回归网络进行裂纹严重程度估计

IF 2.1 Q2 ENGINEERING, MULTIDISCIPLINARY
Shyamala Devi M , Yuvaraj Natarajan , Sri Preethaa K․R , Priya S
{"title":"热像温度梯度分析通过变形变压器残差回归网络进行裂纹严重程度估计","authors":"Shyamala Devi M ,&nbsp;Yuvaraj Natarajan ,&nbsp;Sri Preethaa K․R ,&nbsp;Priya S","doi":"10.1016/j.apples.2025.100265","DOIUrl":null,"url":null,"abstract":"<div><div>Structural crack severity estimation is critical for preventive maintenance, yet conventional approaches often fall short in capturing subsurface defects from thermal imagery due to noise and irrelevant metadata. This paper proposes a novel Vision Deformable Transformer Normalized Residual Regression Network (ViTNResNet18) for temperature gradient analysis and crack severity estimation. The thermal crack images used in this work are sourced from Mendeley Crack900 dataset. The ViTNResNet18 begins by automatically cropping to eliminate FLIR logos and temperature scales, ensuring focus on relevant thermal data. The novelty of the model is Gradient Thermal Filtering (GTF) that combines gradient magnitude, direction, thermal flow, Gabor frequency, and thermal clusters into a unified fused image to enhance crack feature representation. Subsequently, a Heat Dispersion Profile (HDP) is generated to extract critical thermal texture and gradient descriptors. The core ViTNResNet18 replaces standard ResNet18 blocks with Normalized Residual Blocks (NRB) to stabilize local feature extraction, while a ViT Convolutional Neural Network (CNN) fusion module is introduced after average pooling to capture global thermal dependencies. Unlike conventional ViT models, the proposed ViTNResNet18 replaces fixed linear projections with an offset predictor Multi-Layer Perceptron (MLP) and Deformable Positional Embedding (DPE), allowing adaptive focus on temperature gradient variations. The extracted heat dispersion profile is embedded along with transformer features and passed through an MLP regression head to directly estimate crack width and depth. Experimental results demonstrate that the proposed method achieves crack severity prediction accuracy of 99.60 %, significantly outperforming traditional models. The ViTNResNet18 delivers an intelligent and scalable solution for structural crack severity estimation by improving the accuracy of defect detection and quantification contributing to resilient infrastructure.</div></div>","PeriodicalId":72251,"journal":{"name":"Applications in engineering science","volume":"24 ","pages":"Article 100265"},"PeriodicalIF":2.1000,"publicationDate":"2025-09-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Thermal imagery temperature gradient analysis through deformable transformer residual regression network for crack severity estimation\",\"authors\":\"Shyamala Devi M ,&nbsp;Yuvaraj Natarajan ,&nbsp;Sri Preethaa K․R ,&nbsp;Priya S\",\"doi\":\"10.1016/j.apples.2025.100265\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Structural crack severity estimation is critical for preventive maintenance, yet conventional approaches often fall short in capturing subsurface defects from thermal imagery due to noise and irrelevant metadata. This paper proposes a novel Vision Deformable Transformer Normalized Residual Regression Network (ViTNResNet18) for temperature gradient analysis and crack severity estimation. The thermal crack images used in this work are sourced from Mendeley Crack900 dataset. The ViTNResNet18 begins by automatically cropping to eliminate FLIR logos and temperature scales, ensuring focus on relevant thermal data. The novelty of the model is Gradient Thermal Filtering (GTF) that combines gradient magnitude, direction, thermal flow, Gabor frequency, and thermal clusters into a unified fused image to enhance crack feature representation. Subsequently, a Heat Dispersion Profile (HDP) is generated to extract critical thermal texture and gradient descriptors. The core ViTNResNet18 replaces standard ResNet18 blocks with Normalized Residual Blocks (NRB) to stabilize local feature extraction, while a ViT Convolutional Neural Network (CNN) fusion module is introduced after average pooling to capture global thermal dependencies. Unlike conventional ViT models, the proposed ViTNResNet18 replaces fixed linear projections with an offset predictor Multi-Layer Perceptron (MLP) and Deformable Positional Embedding (DPE), allowing adaptive focus on temperature gradient variations. The extracted heat dispersion profile is embedded along with transformer features and passed through an MLP regression head to directly estimate crack width and depth. Experimental results demonstrate that the proposed method achieves crack severity prediction accuracy of 99.60 %, significantly outperforming traditional models. The ViTNResNet18 delivers an intelligent and scalable solution for structural crack severity estimation by improving the accuracy of defect detection and quantification contributing to resilient infrastructure.</div></div>\",\"PeriodicalId\":72251,\"journal\":{\"name\":\"Applications in engineering science\",\"volume\":\"24 \",\"pages\":\"Article 100265\"},\"PeriodicalIF\":2.1000,\"publicationDate\":\"2025-09-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Applications in engineering science\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2666496825000639\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applications in engineering science","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2666496825000639","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

结构裂缝严重程度估计对于预防性维护至关重要,但由于噪声和不相关的元数据,传统方法通常无法从热图像中捕获地下缺陷。本文提出了一种新的视觉变形变压器归一化残差回归网络(ViTNResNet18),用于温度梯度分析和裂纹严重程度估计。本研究中使用的热裂纹图像来自Mendeley Crack900数据集。ViTNResNet18首先自动裁剪以消除FLIR标识和温标,确保专注于相关的热数据。该模型的新颖之处是梯度热滤波(GTF),它将梯度大小、方向、热流、Gabor频率和热簇结合到一个统一的融合图像中,以增强裂缝特征的表征。随后,生成热分散剖面(HDP)以提取关键的热纹理和梯度描述符。核心的ViTNResNet18用归一化残差块(NRB)取代标准的ResNet18块来稳定局部特征提取,而在平均池化之后引入ViT卷积神经网络(CNN)融合模块来捕获全局热依赖关系。与传统的ViT模型不同,提出的ViTNResNet18用偏移预测器多层感知器(MLP)和可变形位置嵌入(DPE)取代了固定的线性投影,允许自适应关注温度梯度变化。将提取的散热剖面与变压器特征一起嵌入,并通过MLP回归头直接估计裂缝宽度和深度。实验结果表明,该方法对裂纹严重程度的预测准确率达到99.60%,显著优于传统模型。ViTNResNet18通过提高缺陷检测和量化的准确性,为结构裂缝严重程度估计提供了智能和可扩展的解决方案,有助于弹性基础设施。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Thermal imagery temperature gradient analysis through deformable transformer residual regression network for crack severity estimation
Structural crack severity estimation is critical for preventive maintenance, yet conventional approaches often fall short in capturing subsurface defects from thermal imagery due to noise and irrelevant metadata. This paper proposes a novel Vision Deformable Transformer Normalized Residual Regression Network (ViTNResNet18) for temperature gradient analysis and crack severity estimation. The thermal crack images used in this work are sourced from Mendeley Crack900 dataset. The ViTNResNet18 begins by automatically cropping to eliminate FLIR logos and temperature scales, ensuring focus on relevant thermal data. The novelty of the model is Gradient Thermal Filtering (GTF) that combines gradient magnitude, direction, thermal flow, Gabor frequency, and thermal clusters into a unified fused image to enhance crack feature representation. Subsequently, a Heat Dispersion Profile (HDP) is generated to extract critical thermal texture and gradient descriptors. The core ViTNResNet18 replaces standard ResNet18 blocks with Normalized Residual Blocks (NRB) to stabilize local feature extraction, while a ViT Convolutional Neural Network (CNN) fusion module is introduced after average pooling to capture global thermal dependencies. Unlike conventional ViT models, the proposed ViTNResNet18 replaces fixed linear projections with an offset predictor Multi-Layer Perceptron (MLP) and Deformable Positional Embedding (DPE), allowing adaptive focus on temperature gradient variations. The extracted heat dispersion profile is embedded along with transformer features and passed through an MLP regression head to directly estimate crack width and depth. Experimental results demonstrate that the proposed method achieves crack severity prediction accuracy of 99.60 %, significantly outperforming traditional models. The ViTNResNet18 delivers an intelligent and scalable solution for structural crack severity estimation by improving the accuracy of defect detection and quantification contributing to resilient infrastructure.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Applications in engineering science
Applications in engineering science Mechanical Engineering
CiteScore
3.60
自引率
0.00%
发文量
0
审稿时长
68 days
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信