尾部平均随机化Kaczmarz

IF 3.2 2区 数学 Q1 MATHEMATICS, APPLIED
Ethan N. Epperly , Gil Goldshlager , Robert J. Webber
{"title":"尾部平均随机化Kaczmarz","authors":"Ethan N. Epperly ,&nbsp;Gil Goldshlager ,&nbsp;Robert J. Webber","doi":"10.1016/j.acha.2025.101812","DOIUrl":null,"url":null,"abstract":"<div><div>The randomized Kaczmarz (RK) method is a well-known approach for solving linear least-squares problems with a large number of rows. RK accesses and processes just one row at a time, leading to exponentially fast convergence for consistent linear systems. However, RK fails to converge to the least-squares solution for inconsistent systems. This work presents a simple fix: average the RK iterates produced in the tail part of the algorithm. The proposed tail-averaged randomized Kaczmarz (TARK) converges for both consistent and inconsistent least-squares problems at a polynomial rate, which is known to be optimal for any row-access method. An extension of TARK also leads to efficient solutions for ridge-regularized least-squares problems.</div></div>","PeriodicalId":55504,"journal":{"name":"Applied and Computational Harmonic Analysis","volume":"80 ","pages":"Article 101812"},"PeriodicalIF":3.2000,"publicationDate":"2025-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Randomized Kaczmarz with tail averaging\",\"authors\":\"Ethan N. Epperly ,&nbsp;Gil Goldshlager ,&nbsp;Robert J. Webber\",\"doi\":\"10.1016/j.acha.2025.101812\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>The randomized Kaczmarz (RK) method is a well-known approach for solving linear least-squares problems with a large number of rows. RK accesses and processes just one row at a time, leading to exponentially fast convergence for consistent linear systems. However, RK fails to converge to the least-squares solution for inconsistent systems. This work presents a simple fix: average the RK iterates produced in the tail part of the algorithm. The proposed tail-averaged randomized Kaczmarz (TARK) converges for both consistent and inconsistent least-squares problems at a polynomial rate, which is known to be optimal for any row-access method. An extension of TARK also leads to efficient solutions for ridge-regularized least-squares problems.</div></div>\",\"PeriodicalId\":55504,\"journal\":{\"name\":\"Applied and Computational Harmonic Analysis\",\"volume\":\"80 \",\"pages\":\"Article 101812\"},\"PeriodicalIF\":3.2000,\"publicationDate\":\"2025-09-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Applied and Computational Harmonic Analysis\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1063520325000661\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied and Computational Harmonic Analysis","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1063520325000661","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

摘要

随机化Kaczmarz (RK)方法是解决具有大量行的线性最小二乘问题的一种众所周知的方法。RK每次只访问和处理一行,导致一致线性系统的指数级快速收敛。然而,对于不一致系统,RK不能收敛到最小二乘解。这项工作提出了一个简单的解决方案:对算法尾部产生的RK迭代进行平均。所提出的尾部平均随机化Kaczmarz (TARK)算法以多项式速度收敛于一致和不一致最小二乘问题,并且对于任何行访问方法都是最优的。TARK的推广也得到了脊正则化最小二乘问题的有效解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Randomized Kaczmarz with tail averaging
The randomized Kaczmarz (RK) method is a well-known approach for solving linear least-squares problems with a large number of rows. RK accesses and processes just one row at a time, leading to exponentially fast convergence for consistent linear systems. However, RK fails to converge to the least-squares solution for inconsistent systems. This work presents a simple fix: average the RK iterates produced in the tail part of the algorithm. The proposed tail-averaged randomized Kaczmarz (TARK) converges for both consistent and inconsistent least-squares problems at a polynomial rate, which is known to be optimal for any row-access method. An extension of TARK also leads to efficient solutions for ridge-regularized least-squares problems.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Applied and Computational Harmonic Analysis
Applied and Computational Harmonic Analysis 物理-物理:数学物理
CiteScore
5.40
自引率
4.00%
发文量
67
审稿时长
22.9 weeks
期刊介绍: Applied and Computational Harmonic Analysis (ACHA) is an interdisciplinary journal that publishes high-quality papers in all areas of mathematical sciences related to the applied and computational aspects of harmonic analysis, with special emphasis on innovative theoretical development, methods, and algorithms, for information processing, manipulation, understanding, and so forth. The objectives of the journal are to chronicle the important publications in the rapidly growing field of data representation and analysis, to stimulate research in relevant interdisciplinary areas, and to provide a common link among mathematical, physical, and life scientists, as well as engineers.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信