{"title":"解决Erdős的单模性问题","authors":"Stijn Cambie","doi":"10.1016/j.jnt.2025.08.014","DOIUrl":null,"url":null,"abstract":"<div><div>Letting <span><math><msub><mrow><mi>δ</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>(</mo><mi>n</mi><mo>,</mo><mi>m</mi><mo>)</mo></math></span> be the density of the set of integers with exactly one divisor in <span><math><mo>(</mo><mi>n</mi><mo>,</mo><mi>m</mi><mo>)</mo></math></span>, Erdős wondered if <span><math><msub><mrow><mi>δ</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>(</mo><mi>n</mi><mo>,</mo><mi>m</mi><mo>)</mo></math></span> is unimodular for fixed <em>n</em>. We prove this is false in general, as the sequence <span><math><mo>(</mo><msub><mrow><mi>δ</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>(</mo><mi>n</mi><mo>,</mo><mi>m</mi><mo>)</mo><mo>)</mo></math></span> has superpolynomially many local extrema. However, we confirm unimodality in the single case for which it occurs; <span><math><mi>n</mi><mo>=</mo><mn>1</mn></math></span>. We also solve the question on unimodality of the density of integers whose <span><math><msup><mrow><mi>k</mi></mrow><mrow><mi>t</mi><mi>h</mi></mrow></msup></math></span> prime is <em>p</em>.</div></div>","PeriodicalId":50110,"journal":{"name":"Journal of Number Theory","volume":"280 ","pages":"Pages 271-277"},"PeriodicalIF":0.7000,"publicationDate":"2025-09-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Resolution of Erdős' problems about unimodularity\",\"authors\":\"Stijn Cambie\",\"doi\":\"10.1016/j.jnt.2025.08.014\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Letting <span><math><msub><mrow><mi>δ</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>(</mo><mi>n</mi><mo>,</mo><mi>m</mi><mo>)</mo></math></span> be the density of the set of integers with exactly one divisor in <span><math><mo>(</mo><mi>n</mi><mo>,</mo><mi>m</mi><mo>)</mo></math></span>, Erdős wondered if <span><math><msub><mrow><mi>δ</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>(</mo><mi>n</mi><mo>,</mo><mi>m</mi><mo>)</mo></math></span> is unimodular for fixed <em>n</em>. We prove this is false in general, as the sequence <span><math><mo>(</mo><msub><mrow><mi>δ</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>(</mo><mi>n</mi><mo>,</mo><mi>m</mi><mo>)</mo><mo>)</mo></math></span> has superpolynomially many local extrema. However, we confirm unimodality in the single case for which it occurs; <span><math><mi>n</mi><mo>=</mo><mn>1</mn></math></span>. We also solve the question on unimodality of the density of integers whose <span><math><msup><mrow><mi>k</mi></mrow><mrow><mi>t</mi><mi>h</mi></mrow></msup></math></span> prime is <em>p</em>.</div></div>\",\"PeriodicalId\":50110,\"journal\":{\"name\":\"Journal of Number Theory\",\"volume\":\"280 \",\"pages\":\"Pages 271-277\"},\"PeriodicalIF\":0.7000,\"publicationDate\":\"2025-09-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Number Theory\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0022314X25002483\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Number Theory","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022314X25002483","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
Letting be the density of the set of integers with exactly one divisor in , Erdős wondered if is unimodular for fixed n. We prove this is false in general, as the sequence has superpolynomially many local extrema. However, we confirm unimodality in the single case for which it occurs; . We also solve the question on unimodality of the density of integers whose prime is p.
期刊介绍:
The Journal of Number Theory (JNT) features selected research articles that represent the broad spectrum of interest in contemporary number theory and allied areas. A valuable resource for mathematicians, the journal provides an international forum for the publication of original research in this field.
The Journal of Number Theory is encouraging submissions of quality, long articles where most or all of the technical details are included. The journal now considers and welcomes also papers in Computational Number Theory.
Starting in May 2019, JNT will have a new format with 3 sections:
JNT Prime targets (possibly very long with complete proofs) high impact papers. Articles published in this section will be granted 1 year promotional open access.
JNT General Section is for shorter papers. We particularly encourage submission from junior researchers. Every attempt will be made to expedite the review process for such submissions.
Computational JNT . This section aims to provide a forum to disseminate contributions which make significant use of computer calculations to derive novel number theoretic results. There will be an online repository where supplementary codes and data can be stored.