数据驱动的TOMGRO模型定位:上海温室番茄生产品种参数优化

IF 8.9 1区 农林科学 Q1 AGRICULTURE, MULTIDISCIPLINARY
Yue Sun , Qingqing Ju , Yiyang Li , Linyi Li , Yuhang Wang , Juan Yang , Tingting Qian
{"title":"数据驱动的TOMGRO模型定位:上海温室番茄生产品种参数优化","authors":"Yue Sun ,&nbsp;Qingqing Ju ,&nbsp;Yiyang Li ,&nbsp;Linyi Li ,&nbsp;Yuhang Wang ,&nbsp;Juan Yang ,&nbsp;Tingting Qian","doi":"10.1016/j.compag.2025.111025","DOIUrl":null,"url":null,"abstract":"<div><div>Crop models are an integral component in greenhouse control systems, enabling the simulation of plant responses to environmental conditions and facilitating optimal operational decisions for high productivity with low energy use. However, existing crop models often lack transferability beyond their original development conditions. Additionally, cultivar-specific parameterization remains challenging, as some parameters can be empirically determined while others require complex calibration. This study adapted the reduced TOMGRO model to simulate growth and yield for four local tomato cultivars under Shanghai greenhouse conditions. Through Sobol’s global sensitivity analysis and Bayesian optimization, four highly influential parameters were identified and optimized, including growth efficiency (E), maintenance respiration coefficient (r<sub>m</sub>), extinction light coefficient (K), and leaf quantum efficiency (Q<sub>e</sub>). This combined approach provides an effective framework for model calibration, with the calibrated model achieving an average R<sup>2</sup> &gt; 0.94 for node number, plant dry weight, fruit dry weight, and leaf area index predictions in all cultivars. Model validation using 2023–2024 greenhouse data confirmed model effectiveness for the target variables (average R<sup>2</sup> &gt; 0.92 for cultivar QX and &gt; 0.88 for LZ), whereas the model showed limitations in simulating mature fruit growth. This calibrated model offers reliable predictions of key growth variables, informing both plant breeding and greenhouse management.</div></div>","PeriodicalId":50627,"journal":{"name":"Computers and Electronics in Agriculture","volume":"239 ","pages":"Article 111025"},"PeriodicalIF":8.9000,"publicationDate":"2025-09-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Data-driven localization of the TOMGRO model: Cultivar-specific parameter optimization for Shanghai greenhouse tomato production\",\"authors\":\"Yue Sun ,&nbsp;Qingqing Ju ,&nbsp;Yiyang Li ,&nbsp;Linyi Li ,&nbsp;Yuhang Wang ,&nbsp;Juan Yang ,&nbsp;Tingting Qian\",\"doi\":\"10.1016/j.compag.2025.111025\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Crop models are an integral component in greenhouse control systems, enabling the simulation of plant responses to environmental conditions and facilitating optimal operational decisions for high productivity with low energy use. However, existing crop models often lack transferability beyond their original development conditions. Additionally, cultivar-specific parameterization remains challenging, as some parameters can be empirically determined while others require complex calibration. This study adapted the reduced TOMGRO model to simulate growth and yield for four local tomato cultivars under Shanghai greenhouse conditions. Through Sobol’s global sensitivity analysis and Bayesian optimization, four highly influential parameters were identified and optimized, including growth efficiency (E), maintenance respiration coefficient (r<sub>m</sub>), extinction light coefficient (K), and leaf quantum efficiency (Q<sub>e</sub>). This combined approach provides an effective framework for model calibration, with the calibrated model achieving an average R<sup>2</sup> &gt; 0.94 for node number, plant dry weight, fruit dry weight, and leaf area index predictions in all cultivars. Model validation using 2023–2024 greenhouse data confirmed model effectiveness for the target variables (average R<sup>2</sup> &gt; 0.92 for cultivar QX and &gt; 0.88 for LZ), whereas the model showed limitations in simulating mature fruit growth. This calibrated model offers reliable predictions of key growth variables, informing both plant breeding and greenhouse management.</div></div>\",\"PeriodicalId\":50627,\"journal\":{\"name\":\"Computers and Electronics in Agriculture\",\"volume\":\"239 \",\"pages\":\"Article 111025\"},\"PeriodicalIF\":8.9000,\"publicationDate\":\"2025-09-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Computers and Electronics in Agriculture\",\"FirstCategoryId\":\"97\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0168169925011317\",\"RegionNum\":1,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"AGRICULTURE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computers and Electronics in Agriculture","FirstCategoryId":"97","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0168169925011317","RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AGRICULTURE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

作物模型是温室控制系统中不可或缺的组成部分,能够模拟植物对环境条件的反应,并促进以低能耗实现高生产力的最佳操作决策。然而,现有的作物模式往往缺乏超出其原始发展条件的可转移性。此外,特定品种的参数化仍然具有挑战性,因为一些参数可以通过经验确定,而另一些参数则需要复杂的校准。本研究采用简化的TOMGRO模型,模拟了上海大棚条件下4个地方番茄品种的生长和产量。通过Sobol全局敏感性分析和贝叶斯优化,确定并优化了生长效率(E)、维持呼吸系数(rm)、消光系数(K)和叶片量子效率(Qe) 4个影响较大的参数。该方法为模型校正提供了有效的框架,校正后的模型对所有品种的节数、植株干重、果实干重和叶面积指数的预测平均R2 >; 0.94。利用2023-2024年温室数据进行的模型验证证实了模型对目标变量的有效性(品种QX的平均R2 >; 0.92, LZ的平均R2 >; 0.88),而模型在模拟成熟果实生长方面存在局限性。该校准模型提供了关键生长变量的可靠预测,为植物育种和温室管理提供了信息。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Data-driven localization of the TOMGRO model: Cultivar-specific parameter optimization for Shanghai greenhouse tomato production
Crop models are an integral component in greenhouse control systems, enabling the simulation of plant responses to environmental conditions and facilitating optimal operational decisions for high productivity with low energy use. However, existing crop models often lack transferability beyond their original development conditions. Additionally, cultivar-specific parameterization remains challenging, as some parameters can be empirically determined while others require complex calibration. This study adapted the reduced TOMGRO model to simulate growth and yield for four local tomato cultivars under Shanghai greenhouse conditions. Through Sobol’s global sensitivity analysis and Bayesian optimization, four highly influential parameters were identified and optimized, including growth efficiency (E), maintenance respiration coefficient (rm), extinction light coefficient (K), and leaf quantum efficiency (Qe). This combined approach provides an effective framework for model calibration, with the calibrated model achieving an average R2 > 0.94 for node number, plant dry weight, fruit dry weight, and leaf area index predictions in all cultivars. Model validation using 2023–2024 greenhouse data confirmed model effectiveness for the target variables (average R2 > 0.92 for cultivar QX and > 0.88 for LZ), whereas the model showed limitations in simulating mature fruit growth. This calibrated model offers reliable predictions of key growth variables, informing both plant breeding and greenhouse management.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Computers and Electronics in Agriculture
Computers and Electronics in Agriculture 工程技术-计算机:跨学科应用
CiteScore
15.30
自引率
14.50%
发文量
800
审稿时长
62 days
期刊介绍: Computers and Electronics in Agriculture provides international coverage of advancements in computer hardware, software, electronic instrumentation, and control systems applied to agricultural challenges. Encompassing agronomy, horticulture, forestry, aquaculture, and animal farming, the journal publishes original papers, reviews, and applications notes. It explores the use of computers and electronics in plant or animal agricultural production, covering topics like agricultural soils, water, pests, controlled environments, and waste. The scope extends to on-farm post-harvest operations and relevant technologies, including artificial intelligence, sensors, machine vision, robotics, networking, and simulation modeling. Its companion journal, Smart Agricultural Technology, continues the focus on smart applications in production agriculture.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信