Zihan Zhang , Xiaojuan Dong , Haigang An , Hai Qi , Sufang An , Zhiliang Dong
{"title":"基于分解-组合时间序列模型的国际主要贵金属期货价格预测","authors":"Zihan Zhang , Xiaojuan Dong , Haigang An , Hai Qi , Sufang An , Zhiliang Dong","doi":"10.1016/j.najef.2025.102541","DOIUrl":null,"url":null,"abstract":"<div><div>In the complex and volatile macroeconomic environment, precious metals play an important role in investment risk management because of their value preservation, value-added, and hedging functions. If investors can effectively predict price fluctuations in the precious metals market and thus optimize their investment portfolio strategies in time, they may be able to avoid market risks. In this paper, the futures prices of three international precious metals on the New York Mercantile Exchange of the Wind Database from 2014 to 2024 are taken as examples. First of all, the time-varying characteristics of non-pervasive, non-Gaussian, aging and delay are obtained for precious metals. Then the trend term, seasonal term, and residual term of the price series are modeled with the Autoregressive Integrated Moving Average (ARIMA) model, the Exponen Tial Smoothing (ETS) model, and the Long-Short Term Memory (LSTM) model, respectively, and the results are summarized to form a forecast of the futures prices of precious metals for the next 100 days. The results show that the error of the combination model for the three precious metal price predictions is less than 0.03, and the model fit is more than 0.98, indicating that the decomposition-combination model is suitable for predicting the precious metal futures prices. According to the results of the study, gold and silver have investment value in a short period, while the investment value of platinum is not obvious. Corresponding investment advice for investors is also given.</div></div>","PeriodicalId":47831,"journal":{"name":"North American Journal of Economics and Finance","volume":"81 ","pages":"Article 102541"},"PeriodicalIF":3.9000,"publicationDate":"2025-09-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"International main precious metals futures price forecasting based on decomposition-combinatorial time series model\",\"authors\":\"Zihan Zhang , Xiaojuan Dong , Haigang An , Hai Qi , Sufang An , Zhiliang Dong\",\"doi\":\"10.1016/j.najef.2025.102541\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>In the complex and volatile macroeconomic environment, precious metals play an important role in investment risk management because of their value preservation, value-added, and hedging functions. If investors can effectively predict price fluctuations in the precious metals market and thus optimize their investment portfolio strategies in time, they may be able to avoid market risks. In this paper, the futures prices of three international precious metals on the New York Mercantile Exchange of the Wind Database from 2014 to 2024 are taken as examples. First of all, the time-varying characteristics of non-pervasive, non-Gaussian, aging and delay are obtained for precious metals. Then the trend term, seasonal term, and residual term of the price series are modeled with the Autoregressive Integrated Moving Average (ARIMA) model, the Exponen Tial Smoothing (ETS) model, and the Long-Short Term Memory (LSTM) model, respectively, and the results are summarized to form a forecast of the futures prices of precious metals for the next 100 days. The results show that the error of the combination model for the three precious metal price predictions is less than 0.03, and the model fit is more than 0.98, indicating that the decomposition-combination model is suitable for predicting the precious metal futures prices. According to the results of the study, gold and silver have investment value in a short period, while the investment value of platinum is not obvious. Corresponding investment advice for investors is also given.</div></div>\",\"PeriodicalId\":47831,\"journal\":{\"name\":\"North American Journal of Economics and Finance\",\"volume\":\"81 \",\"pages\":\"Article 102541\"},\"PeriodicalIF\":3.9000,\"publicationDate\":\"2025-09-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"North American Journal of Economics and Finance\",\"FirstCategoryId\":\"96\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1062940825001810\",\"RegionNum\":3,\"RegionCategory\":\"经济学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BUSINESS, FINANCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"North American Journal of Economics and Finance","FirstCategoryId":"96","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1062940825001810","RegionNum":3,"RegionCategory":"经济学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BUSINESS, FINANCE","Score":null,"Total":0}
International main precious metals futures price forecasting based on decomposition-combinatorial time series model
In the complex and volatile macroeconomic environment, precious metals play an important role in investment risk management because of their value preservation, value-added, and hedging functions. If investors can effectively predict price fluctuations in the precious metals market and thus optimize their investment portfolio strategies in time, they may be able to avoid market risks. In this paper, the futures prices of three international precious metals on the New York Mercantile Exchange of the Wind Database from 2014 to 2024 are taken as examples. First of all, the time-varying characteristics of non-pervasive, non-Gaussian, aging and delay are obtained for precious metals. Then the trend term, seasonal term, and residual term of the price series are modeled with the Autoregressive Integrated Moving Average (ARIMA) model, the Exponen Tial Smoothing (ETS) model, and the Long-Short Term Memory (LSTM) model, respectively, and the results are summarized to form a forecast of the futures prices of precious metals for the next 100 days. The results show that the error of the combination model for the three precious metal price predictions is less than 0.03, and the model fit is more than 0.98, indicating that the decomposition-combination model is suitable for predicting the precious metal futures prices. According to the results of the study, gold and silver have investment value in a short period, while the investment value of platinum is not obvious. Corresponding investment advice for investors is also given.
期刊介绍:
The focus of the North-American Journal of Economics and Finance is on the economics of integration of goods, services, financial markets, at both regional and global levels with the role of economic policy in that process playing an important role. Both theoretical and empirical papers are welcome. Empirical and policy-related papers that rely on data and the experiences of countries outside North America are also welcome. Papers should offer concrete lessons about the ongoing process of globalization, or policy implications about how governments, domestic or international institutions, can improve the coordination of their activities. Empirical analysis should be capable of replication. Authors of accepted papers will be encouraged to supply data and computer programs.