从声明性的以数据为中心的流程模型合成目标模型

IF 3.4 2区 计算机科学 Q2 COMPUTER SCIENCE, INFORMATION SYSTEMS
Rik Eshuis , Aditya Ghose
{"title":"从声明性的以数据为中心的流程模型合成目标模型","authors":"Rik Eshuis ,&nbsp;Aditya Ghose","doi":"10.1016/j.is.2025.102626","DOIUrl":null,"url":null,"abstract":"<div><div>Knowledge-intensive processes progress towards the achievement of operational goals. These processes typically rely on data to enable data-driven decision making, but also require substantial flexibility to deal with the complex and dynamic environments in which they operate. Consequently, declarative data-centric process modeling languages such as the Case Management Model and Notation (CMMN) have been proposed to model knowledge-intensive processes. However, while such process models allow to express goals, they specify dependencies between the goals only implicitly. This makes the goal-oriented behavior of declarative data-centric process models hard to understand, and therefore obfuscates the goal-oriented behavior of knowledge-intensive processes. This paper defines a structural, semi-automated approach to explicate the goal-oriented aspects of declarative data-centric process models. The approach first derives goal relations from a declarative data-centric process model and next synthesizes these goal relations into a goal model using an algorithm. The approach is supported by a tool and has been evaluated in case studies. Using the approach, implicit goal dependencies in declarative data-centric process models are expressed in goal models. This supports the understanding of goal-oriented aspects of declarative data-centric process models.</div></div>","PeriodicalId":50363,"journal":{"name":"Information Systems","volume":"136 ","pages":"Article 102626"},"PeriodicalIF":3.4000,"publicationDate":"2025-09-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Synthesizing goal models from declarative data-centric process models\",\"authors\":\"Rik Eshuis ,&nbsp;Aditya Ghose\",\"doi\":\"10.1016/j.is.2025.102626\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Knowledge-intensive processes progress towards the achievement of operational goals. These processes typically rely on data to enable data-driven decision making, but also require substantial flexibility to deal with the complex and dynamic environments in which they operate. Consequently, declarative data-centric process modeling languages such as the Case Management Model and Notation (CMMN) have been proposed to model knowledge-intensive processes. However, while such process models allow to express goals, they specify dependencies between the goals only implicitly. This makes the goal-oriented behavior of declarative data-centric process models hard to understand, and therefore obfuscates the goal-oriented behavior of knowledge-intensive processes. This paper defines a structural, semi-automated approach to explicate the goal-oriented aspects of declarative data-centric process models. The approach first derives goal relations from a declarative data-centric process model and next synthesizes these goal relations into a goal model using an algorithm. The approach is supported by a tool and has been evaluated in case studies. Using the approach, implicit goal dependencies in declarative data-centric process models are expressed in goal models. This supports the understanding of goal-oriented aspects of declarative data-centric process models.</div></div>\",\"PeriodicalId\":50363,\"journal\":{\"name\":\"Information Systems\",\"volume\":\"136 \",\"pages\":\"Article 102626\"},\"PeriodicalIF\":3.4000,\"publicationDate\":\"2025-09-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Information Systems\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0306437925001127\",\"RegionNum\":2,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, INFORMATION SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Information Systems","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0306437925001127","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0

摘要

知识密集型流程朝着业务目标的实现迈进。这些流程通常依赖于数据来实现数据驱动的决策,但也需要很大的灵活性来处理它们所处的复杂和动态环境。因此,已经提出了以声明性数据为中心的流程建模语言,如案例管理模型和表示法(CMMN)来对知识密集型流程进行建模。然而,尽管这样的流程模型允许表达目标,但它们只是隐式地指定了目标之间的依赖关系。这使得声明性数据中心流程模型的面向目标行为难以理解,从而混淆了知识密集型流程的面向目标行为。本文定义了一种结构化、半自动化的方法来解释声明性数据中心流程模型的面向目标方面。该方法首先从声明性的以数据为中心的流程模型中派生目标关系,然后使用算法将这些目标关系综合到目标模型中。该方法得到了一个工具的支持,并在案例研究中进行了评估。使用该方法,声明性数据中心流程模型中的隐式目标依赖关系在目标模型中表示。这支持理解声明性数据中心流程模型的面向目标方面。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Synthesizing goal models from declarative data-centric process models
Knowledge-intensive processes progress towards the achievement of operational goals. These processes typically rely on data to enable data-driven decision making, but also require substantial flexibility to deal with the complex and dynamic environments in which they operate. Consequently, declarative data-centric process modeling languages such as the Case Management Model and Notation (CMMN) have been proposed to model knowledge-intensive processes. However, while such process models allow to express goals, they specify dependencies between the goals only implicitly. This makes the goal-oriented behavior of declarative data-centric process models hard to understand, and therefore obfuscates the goal-oriented behavior of knowledge-intensive processes. This paper defines a structural, semi-automated approach to explicate the goal-oriented aspects of declarative data-centric process models. The approach first derives goal relations from a declarative data-centric process model and next synthesizes these goal relations into a goal model using an algorithm. The approach is supported by a tool and has been evaluated in case studies. Using the approach, implicit goal dependencies in declarative data-centric process models are expressed in goal models. This supports the understanding of goal-oriented aspects of declarative data-centric process models.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Information Systems
Information Systems 工程技术-计算机:信息系统
CiteScore
9.40
自引率
2.70%
发文量
112
审稿时长
53 days
期刊介绍: Information systems are the software and hardware systems that support data-intensive applications. The journal Information Systems publishes articles concerning the design and implementation of languages, data models, process models, algorithms, software and hardware for information systems. Subject areas include data management issues as presented in the principal international database conferences (e.g., ACM SIGMOD/PODS, VLDB, ICDE and ICDT/EDBT) as well as data-related issues from the fields of data mining/machine learning, information retrieval coordinated with structured data, internet and cloud data management, business process management, web semantics, visual and audio information systems, scientific computing, and data science. Implementation papers having to do with massively parallel data management, fault tolerance in practice, and special purpose hardware for data-intensive systems are also welcome. Manuscripts from application domains, such as urban informatics, social and natural science, and Internet of Things, are also welcome. All papers should highlight innovative solutions to data management problems such as new data models, performance enhancements, and show how those innovations contribute to the goals of the application.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信