基于meta-GGA近似的碳化硅上石墨烯缓冲层带隙特性可靠预测

IF 3.9 Q2 MATERIALS SCIENCE, MULTIDISCIPLINARY
Elaheh Mohebbi , Eleonora Pavoni , Pierluigi Stipa , Marina Petroselli , Luca Pierantoni , Emiliano Laudadio , Davide Mencarelli
{"title":"基于meta-GGA近似的碳化硅上石墨烯缓冲层带隙特性可靠预测","authors":"Elaheh Mohebbi ,&nbsp;Eleonora Pavoni ,&nbsp;Pierluigi Stipa ,&nbsp;Marina Petroselli ,&nbsp;Luca Pierantoni ,&nbsp;Emiliano Laudadio ,&nbsp;Davide Mencarelli","doi":"10.1016/j.cartre.2025.100575","DOIUrl":null,"url":null,"abstract":"<div><div>While different Density Functional Theory (DFT) methods have been performed to determine the electronic band structure of graphene buffer layer (GBL) over the Si-terminated SiC (0001) surface, still a correct band gap (E<sub>gap</sub>) close to the experimental one has never been demonstrated. The novelty of this study is that for the first time the outcomes have reproduced the experimental E<sub>gap</sub> (greater than 0.5 eV) of GBL@SiC (0001) system with an indirect/direct E<sub>gap</sub> of 0.65/0.80 eV using improved Meta Generalized Gradient Approximation (MGGA) methodology with medium basis set (MGGA-Medium). The results revealed that GBL has lower E<sub>gap</sub> with other basis sets of MGGA-High with 0.32 eV (indirect) and 0.33 eV (direct), whereas MGGA-Ultra estimated a zero E<sub>gap</sub>. Absorption spectrum indicated that the presence of two peaks at 61,801 cm<sup>-1</sup> and 64,833 cm<sup>-1</sup> at 265 THz and 290 THz for GBL/SiC along the <em>xx</em>- and <em>yy</em>- (in-plane) directions, respectively. The <em>Im(ω)</em> reveal that the optical E<sub>gap</sub> is around 181 THz. Furthermore, <em>Re</em>(<em>ω</em>) of GBL monolayer after the interface on SiC (0001) has predicted to be 2.34, 2.32 and 1.07 along with the <em>xx</em>-, <em>yy</em>- in-plane and <em>zz-</em> out-of-plane polarizations, respectively. More information about the optical properties of this interface show that maximum static value of <span><math><mi>n</mi></math></span> along the <em>xx</em>- in-plane direction calculated to be 1.58, while initial non-zero value of <span><math><mi>κ</mi></math></span> is about 12.08 THz.</div></div>","PeriodicalId":52629,"journal":{"name":"Carbon Trends","volume":"21 ","pages":"Article 100575"},"PeriodicalIF":3.9000,"publicationDate":"2025-09-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Reliable prediction of the band gap properties of graphene buffer layer on SiC using meta-GGA approximation\",\"authors\":\"Elaheh Mohebbi ,&nbsp;Eleonora Pavoni ,&nbsp;Pierluigi Stipa ,&nbsp;Marina Petroselli ,&nbsp;Luca Pierantoni ,&nbsp;Emiliano Laudadio ,&nbsp;Davide Mencarelli\",\"doi\":\"10.1016/j.cartre.2025.100575\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>While different Density Functional Theory (DFT) methods have been performed to determine the electronic band structure of graphene buffer layer (GBL) over the Si-terminated SiC (0001) surface, still a correct band gap (E<sub>gap</sub>) close to the experimental one has never been demonstrated. The novelty of this study is that for the first time the outcomes have reproduced the experimental E<sub>gap</sub> (greater than 0.5 eV) of GBL@SiC (0001) system with an indirect/direct E<sub>gap</sub> of 0.65/0.80 eV using improved Meta Generalized Gradient Approximation (MGGA) methodology with medium basis set (MGGA-Medium). The results revealed that GBL has lower E<sub>gap</sub> with other basis sets of MGGA-High with 0.32 eV (indirect) and 0.33 eV (direct), whereas MGGA-Ultra estimated a zero E<sub>gap</sub>. Absorption spectrum indicated that the presence of two peaks at 61,801 cm<sup>-1</sup> and 64,833 cm<sup>-1</sup> at 265 THz and 290 THz for GBL/SiC along the <em>xx</em>- and <em>yy</em>- (in-plane) directions, respectively. The <em>Im(ω)</em> reveal that the optical E<sub>gap</sub> is around 181 THz. Furthermore, <em>Re</em>(<em>ω</em>) of GBL monolayer after the interface on SiC (0001) has predicted to be 2.34, 2.32 and 1.07 along with the <em>xx</em>-, <em>yy</em>- in-plane and <em>zz-</em> out-of-plane polarizations, respectively. More information about the optical properties of this interface show that maximum static value of <span><math><mi>n</mi></math></span> along the <em>xx</em>- in-plane direction calculated to be 1.58, while initial non-zero value of <span><math><mi>κ</mi></math></span> is about 12.08 THz.</div></div>\",\"PeriodicalId\":52629,\"journal\":{\"name\":\"Carbon Trends\",\"volume\":\"21 \",\"pages\":\"Article 100575\"},\"PeriodicalIF\":3.9000,\"publicationDate\":\"2025-09-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Carbon Trends\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2667056925001245\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Carbon Trends","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2667056925001245","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

虽然已经使用了不同的密度泛函理论(DFT)方法来确定si端SiC(0001)表面上石墨烯缓冲层(GBL)的电子能带结构,但仍然没有证明接近实验带隙的正确带隙(Egap)。本研究的新颖之处在于,首次使用改进的中等基集(MGGA- medium)的Meta广义梯度近似(MGGA)方法再现了GBL@SiC(0001)系统的实验Egap(大于0.5 eV),间接/直接Egap为0.65/0.80 eV。结果表明,GBL与其他MGGA-High基组的Egap值较低,分别为0.32 eV(间接)和0.33 eV(直接),而MGGA-Ultra基组的Egap值为零。吸收光谱表明,GBL/SiC在xx-和yy-(面内)方向分别在265 THz和290 THz处存在61801 cm-1和64833 cm-1两个峰。Im(ω)显示光学Egap约为181太赫兹。此外,在SiC(0001)界面后的GBL单层的Re(ω)分别为2.34,2.32和1.07,分别为xx-, yy-面内和zz-面外极化。关于该接口光学特性的更多信息表明,沿xx-面内方向n的最大静态值计算为1.58,而κ的初始非零值约为12.08 THz。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Reliable prediction of the band gap properties of graphene buffer layer on SiC using meta-GGA approximation
While different Density Functional Theory (DFT) methods have been performed to determine the electronic band structure of graphene buffer layer (GBL) over the Si-terminated SiC (0001) surface, still a correct band gap (Egap) close to the experimental one has never been demonstrated. The novelty of this study is that for the first time the outcomes have reproduced the experimental Egap (greater than 0.5 eV) of GBL@SiC (0001) system with an indirect/direct Egap of 0.65/0.80 eV using improved Meta Generalized Gradient Approximation (MGGA) methodology with medium basis set (MGGA-Medium). The results revealed that GBL has lower Egap with other basis sets of MGGA-High with 0.32 eV (indirect) and 0.33 eV (direct), whereas MGGA-Ultra estimated a zero Egap. Absorption spectrum indicated that the presence of two peaks at 61,801 cm-1 and 64,833 cm-1 at 265 THz and 290 THz for GBL/SiC along the xx- and yy- (in-plane) directions, respectively. The Im(ω) reveal that the optical Egap is around 181 THz. Furthermore, Re(ω) of GBL monolayer after the interface on SiC (0001) has predicted to be 2.34, 2.32 and 1.07 along with the xx-, yy- in-plane and zz- out-of-plane polarizations, respectively. More information about the optical properties of this interface show that maximum static value of n along the xx- in-plane direction calculated to be 1.58, while initial non-zero value of κ is about 12.08 THz.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Carbon Trends
Carbon Trends Materials Science-Materials Science (miscellaneous)
CiteScore
4.60
自引率
0.00%
发文量
88
审稿时长
77 days
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信