机器学习优化的太阳能热预处理和低能量超声波分解用于增强沼气生产:效率,碳足迹和比较分析

Hassan A. Hameed Al-Hamzawi , Ali S. Abed Al Sailawi , Ali Alhraishawi , Rasha Abed Hussein , Maad M. Mijwil
{"title":"机器学习优化的太阳能热预处理和低能量超声波分解用于增强沼气生产:效率,碳足迹和比较分析","authors":"Hassan A. Hameed Al-Hamzawi ,&nbsp;Ali S. Abed Al Sailawi ,&nbsp;Ali Alhraishawi ,&nbsp;Rasha Abed Hussein ,&nbsp;Maad M. Mijwil","doi":"10.1016/j.nxener.2025.100435","DOIUrl":null,"url":null,"abstract":"<div><div>This experimental and modeling study explores the integration of renewable energy-based pretreatment methods (solar thermal and ultrasonic) with anaerobic digestion (AD) for sustainable sludge management and enhanced biogas production. Building on prior experimental work that utilized microwave pretreatment, the study employs machine learning (ML) to model and optimize AD performance under renewable energy pretreatment. Experimental validation was conducted using lab-scale continuously stirred tank reactors (CSTRs) with a comprehensive dataset of experimental runs. Key findings demonstrate that solar thermal and ultrasonic methods achieve 20.5% ± 1.8% and 18.7% ± 2.1% higher methane production (295 ± 22 and 285 ± 20 mL CH₄/g VS, respectively) and 30.9% ± 2.1% greater chemical oxygen demand (COD) solubilization compared to microwave pretreatment (245 ± 18 mL CH₄/g VS), while reducing energy consumption by 40.1% ± 3.2% and 35.6% ± 2.8%, respectively. ML models (Random Forest and Gradient Boosting) demonstrated high accuracy (<em>R</em>² = 0.952 ± 0.018 and 0.948 ± 0.022, respectively) in predicting biogas yield and identifying optimal pretreatment parameters. Comprehensive life cycle assessment including upstream emissions shows 49% and 37% carbon footprint reduction for solar thermal and ultrasonic systems, respectively, compared to microwave pretreatment. This work provides both experimental validation and theoretical framework for future large-scale implementation and highlights the potential of ML-driven optimization to advance sustainable sludge-to-energy conversion, offering significant implications for reducing operational costs.</div></div>","PeriodicalId":100957,"journal":{"name":"Next Energy","volume":"9 ","pages":"Article 100435"},"PeriodicalIF":0.0000,"publicationDate":"2025-09-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Machine learning-optimized solar thermal pretreatment and low-energy ultrasonic disintegration for enhanced biogas production: Efficiency, carbon footprint, and comparative analysis\",\"authors\":\"Hassan A. Hameed Al-Hamzawi ,&nbsp;Ali S. Abed Al Sailawi ,&nbsp;Ali Alhraishawi ,&nbsp;Rasha Abed Hussein ,&nbsp;Maad M. Mijwil\",\"doi\":\"10.1016/j.nxener.2025.100435\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>This experimental and modeling study explores the integration of renewable energy-based pretreatment methods (solar thermal and ultrasonic) with anaerobic digestion (AD) for sustainable sludge management and enhanced biogas production. Building on prior experimental work that utilized microwave pretreatment, the study employs machine learning (ML) to model and optimize AD performance under renewable energy pretreatment. Experimental validation was conducted using lab-scale continuously stirred tank reactors (CSTRs) with a comprehensive dataset of experimental runs. Key findings demonstrate that solar thermal and ultrasonic methods achieve 20.5% ± 1.8% and 18.7% ± 2.1% higher methane production (295 ± 22 and 285 ± 20 mL CH₄/g VS, respectively) and 30.9% ± 2.1% greater chemical oxygen demand (COD) solubilization compared to microwave pretreatment (245 ± 18 mL CH₄/g VS), while reducing energy consumption by 40.1% ± 3.2% and 35.6% ± 2.8%, respectively. ML models (Random Forest and Gradient Boosting) demonstrated high accuracy (<em>R</em>² = 0.952 ± 0.018 and 0.948 ± 0.022, respectively) in predicting biogas yield and identifying optimal pretreatment parameters. Comprehensive life cycle assessment including upstream emissions shows 49% and 37% carbon footprint reduction for solar thermal and ultrasonic systems, respectively, compared to microwave pretreatment. This work provides both experimental validation and theoretical framework for future large-scale implementation and highlights the potential of ML-driven optimization to advance sustainable sludge-to-energy conversion, offering significant implications for reducing operational costs.</div></div>\",\"PeriodicalId\":100957,\"journal\":{\"name\":\"Next Energy\",\"volume\":\"9 \",\"pages\":\"Article 100435\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2025-09-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Next Energy\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2949821X2500198X\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Next Energy","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2949821X2500198X","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

这项实验和建模研究探索了基于可再生能源的预处理方法(太阳能热和超声波)与厌氧消化(AD)的整合,以实现可持续的污泥管理和提高沼气产量。在先前使用微波预处理的实验工作的基础上,该研究使用机器学习(ML)来建模和优化可再生能源预处理下的AD性能。利用实验室规模的连续搅拌槽式反应器(CSTRs)进行了实验验证,并进行了全面的实验运行数据集。主要研究结果表明,与微波预处理(245±18 mL CH₄/g VS)相比,光热和超声处理的甲烷产量(295±22 mL CH₄/g VS)分别提高20.5%±1.8%和18.7%±2.1%,化学需氧量(COD)增溶率提高30.9%±2.1%,能耗分别降低40.1%±3.2%和35.6%±2.8%。ML模型(随机森林和梯度增强)在预测沼气产量和确定最佳预处理参数方面具有较高的准确性(R²分别= 0.952±0.018和0.948±0.022)。包括上游排放在内的综合生命周期评估显示,与微波预处理相比,太阳能热和超声波系统的碳足迹分别减少了49%和37%。这项工作为未来的大规模实施提供了实验验证和理论框架,并强调了机器学习驱动的优化在推进可持续污泥转化为能源方面的潜力,为降低运营成本提供了重要意义。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Machine learning-optimized solar thermal pretreatment and low-energy ultrasonic disintegration for enhanced biogas production: Efficiency, carbon footprint, and comparative analysis
This experimental and modeling study explores the integration of renewable energy-based pretreatment methods (solar thermal and ultrasonic) with anaerobic digestion (AD) for sustainable sludge management and enhanced biogas production. Building on prior experimental work that utilized microwave pretreatment, the study employs machine learning (ML) to model and optimize AD performance under renewable energy pretreatment. Experimental validation was conducted using lab-scale continuously stirred tank reactors (CSTRs) with a comprehensive dataset of experimental runs. Key findings demonstrate that solar thermal and ultrasonic methods achieve 20.5% ± 1.8% and 18.7% ± 2.1% higher methane production (295 ± 22 and 285 ± 20 mL CH₄/g VS, respectively) and 30.9% ± 2.1% greater chemical oxygen demand (COD) solubilization compared to microwave pretreatment (245 ± 18 mL CH₄/g VS), while reducing energy consumption by 40.1% ± 3.2% and 35.6% ± 2.8%, respectively. ML models (Random Forest and Gradient Boosting) demonstrated high accuracy (R² = 0.952 ± 0.018 and 0.948 ± 0.022, respectively) in predicting biogas yield and identifying optimal pretreatment parameters. Comprehensive life cycle assessment including upstream emissions shows 49% and 37% carbon footprint reduction for solar thermal and ultrasonic systems, respectively, compared to microwave pretreatment. This work provides both experimental validation and theoretical framework for future large-scale implementation and highlights the potential of ML-driven optimization to advance sustainable sludge-to-energy conversion, offering significant implications for reducing operational costs.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信