混合ANN-AHP-GIS框架与降维和不确定性量化在印度南部的太阳能选址

IF 7.6 Q1 ENERGY & FUELS
Radhika Guntupalli , S.K.B. Pradeepkumar CH , Bala Bhaskar Duddeti , Narendra Ankireddy , V.P. Meena , Vinay Kumar Jadoun
{"title":"混合ANN-AHP-GIS框架与降维和不确定性量化在印度南部的太阳能选址","authors":"Radhika Guntupalli ,&nbsp;S.K.B. Pradeepkumar CH ,&nbsp;Bala Bhaskar Duddeti ,&nbsp;Narendra Ankireddy ,&nbsp;V.P. Meena ,&nbsp;Vinay Kumar Jadoun","doi":"10.1016/j.ecmx.2025.101280","DOIUrl":null,"url":null,"abstract":"<div><div>This study presents a novel hybrid framework for assessing solar energy feasibility across nineteen sites in Southern India by combining artificial neural networks (ANN) and the analytic hierarchy process (AHP). Using a 40:60 weighting, the model integrates expert-driven AHP and data-driven ANN scores, demonstrating 85 % ranking stability across different settings, indicating a robust and reliable site prioritization that remains consistent despite input variability through Monte Carlo simulations. Nine spatial criteria, including solar irradiation (4–7 kW/m<sup>2</sup>), land cost variability (±12 %), grid proximity, unused land, land slope, land area, ecological impact, population density, and future energy demand, are incorporated into actionable suitability maps using geographic information systems (GIS). Principal component analysis (PCA) and t-distributed stochastic neighbor embedding (t-SNE) diminish dimensionality, encapsulating 94 % of data variance, thereby facilitating the simplification of intricate criteria for enhanced interpretability without substantial information loss and uncovering latent patterns in site suitability. Robust concordance among scoring systems is validated by Spearman, Pearson, and Kendall correlation analyses (Pearson &gt; 0.99). The framework also includes uncertainty quantification, modeling variance in input data (e.g., ±5% solar irradiation) and ANN prediction uncertainty (±0.03), producing 95 % confidence intervals for site rankings. Among the top-ranked sites are Vizag, Guntur, and Srikakulam. The hybrid technique enhances classification accuracy by 22 % compared to individual models. Three-dimensional scatter plots, heat maps, and radar charts, among other visualization methods, illustrate the tradeoffs between land cost, environmental impact, and infrastructural accessibility. The fully automated MATLAB framework offers policymakers a swift, reproducible, and scalable decision-support tool for efficient, transparent, and risk-informed solar site selection aligned with national energy objectives.</div></div>","PeriodicalId":37131,"journal":{"name":"Energy Conversion and Management-X","volume":"28 ","pages":"Article 101280"},"PeriodicalIF":7.6000,"publicationDate":"2025-09-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A hybrid ANN–AHP–GIS framework with dimensionality reduction and uncertainty quantification for solar site selection in Southern India\",\"authors\":\"Radhika Guntupalli ,&nbsp;S.K.B. Pradeepkumar CH ,&nbsp;Bala Bhaskar Duddeti ,&nbsp;Narendra Ankireddy ,&nbsp;V.P. Meena ,&nbsp;Vinay Kumar Jadoun\",\"doi\":\"10.1016/j.ecmx.2025.101280\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>This study presents a novel hybrid framework for assessing solar energy feasibility across nineteen sites in Southern India by combining artificial neural networks (ANN) and the analytic hierarchy process (AHP). Using a 40:60 weighting, the model integrates expert-driven AHP and data-driven ANN scores, demonstrating 85 % ranking stability across different settings, indicating a robust and reliable site prioritization that remains consistent despite input variability through Monte Carlo simulations. Nine spatial criteria, including solar irradiation (4–7 kW/m<sup>2</sup>), land cost variability (±12 %), grid proximity, unused land, land slope, land area, ecological impact, population density, and future energy demand, are incorporated into actionable suitability maps using geographic information systems (GIS). Principal component analysis (PCA) and t-distributed stochastic neighbor embedding (t-SNE) diminish dimensionality, encapsulating 94 % of data variance, thereby facilitating the simplification of intricate criteria for enhanced interpretability without substantial information loss and uncovering latent patterns in site suitability. Robust concordance among scoring systems is validated by Spearman, Pearson, and Kendall correlation analyses (Pearson &gt; 0.99). The framework also includes uncertainty quantification, modeling variance in input data (e.g., ±5% solar irradiation) and ANN prediction uncertainty (±0.03), producing 95 % confidence intervals for site rankings. Among the top-ranked sites are Vizag, Guntur, and Srikakulam. The hybrid technique enhances classification accuracy by 22 % compared to individual models. Three-dimensional scatter plots, heat maps, and radar charts, among other visualization methods, illustrate the tradeoffs between land cost, environmental impact, and infrastructural accessibility. The fully automated MATLAB framework offers policymakers a swift, reproducible, and scalable decision-support tool for efficient, transparent, and risk-informed solar site selection aligned with national energy objectives.</div></div>\",\"PeriodicalId\":37131,\"journal\":{\"name\":\"Energy Conversion and Management-X\",\"volume\":\"28 \",\"pages\":\"Article 101280\"},\"PeriodicalIF\":7.6000,\"publicationDate\":\"2025-09-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Energy Conversion and Management-X\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S259017452500412X\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENERGY & FUELS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Energy Conversion and Management-X","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S259017452500412X","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0

摘要

本研究提出了一种新的混合框架,通过结合人工神经网络(ANN)和层次分析法(AHP)来评估印度南部19个地点的太阳能可行性。使用40:60的权重,该模型集成了专家驱动的AHP和数据驱动的ANN分数,在不同设置下显示出85%的排名稳定性,表明尽管通过蒙特卡罗模拟输入变化,但仍然保持一致的稳健可靠的站点优先级。九项空间标准,包括太阳辐照(4-7千瓦/平方米)、土地成本变异性(±12%)、电网接近度、未利用土地、土地坡度、土地面积、生态影响、人口密度和未来能源需求,利用地理信息系统(GIS)纳入可操作的适宜性地图。主成分分析(PCA)和t分布随机邻居嵌入(t-SNE)减少了维数,封装了94%的数据方差,从而简化了复杂的标准,增强了可解释性,而不会造成大量信息损失,并揭示了场地适宜性的潜在模式。Spearman、Pearson和Kendall相关分析(Pearson > 0.99)验证了评分系统之间的稳健一致性。该框架还包括不确定性量化、输入数据的建模方差(例如,±5%太阳辐照)和人工神经网络预测不确定性(±0.03),为站点排名产生95%的置信区间。排名靠前的网站包括Vizag、Guntur和Srikakulam。与单个模型相比,混合技术的分类准确率提高了22%。三维散点图、热图和雷达图,以及其他可视化方法,说明了土地成本、环境影响和基础设施可达性之间的权衡。完全自动化的MATLAB框架为政策制定者提供了一个快速、可重复和可扩展的决策支持工具,用于高效、透明和风险知情的太阳能站点选择,与国家能源目标保持一致。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A hybrid ANN–AHP–GIS framework with dimensionality reduction and uncertainty quantification for solar site selection in Southern India
This study presents a novel hybrid framework for assessing solar energy feasibility across nineteen sites in Southern India by combining artificial neural networks (ANN) and the analytic hierarchy process (AHP). Using a 40:60 weighting, the model integrates expert-driven AHP and data-driven ANN scores, demonstrating 85 % ranking stability across different settings, indicating a robust and reliable site prioritization that remains consistent despite input variability through Monte Carlo simulations. Nine spatial criteria, including solar irradiation (4–7 kW/m2), land cost variability (±12 %), grid proximity, unused land, land slope, land area, ecological impact, population density, and future energy demand, are incorporated into actionable suitability maps using geographic information systems (GIS). Principal component analysis (PCA) and t-distributed stochastic neighbor embedding (t-SNE) diminish dimensionality, encapsulating 94 % of data variance, thereby facilitating the simplification of intricate criteria for enhanced interpretability without substantial information loss and uncovering latent patterns in site suitability. Robust concordance among scoring systems is validated by Spearman, Pearson, and Kendall correlation analyses (Pearson > 0.99). The framework also includes uncertainty quantification, modeling variance in input data (e.g., ±5% solar irradiation) and ANN prediction uncertainty (±0.03), producing 95 % confidence intervals for site rankings. Among the top-ranked sites are Vizag, Guntur, and Srikakulam. The hybrid technique enhances classification accuracy by 22 % compared to individual models. Three-dimensional scatter plots, heat maps, and radar charts, among other visualization methods, illustrate the tradeoffs between land cost, environmental impact, and infrastructural accessibility. The fully automated MATLAB framework offers policymakers a swift, reproducible, and scalable decision-support tool for efficient, transparent, and risk-informed solar site selection aligned with national energy objectives.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
8.80
自引率
3.20%
发文量
180
审稿时长
58 days
期刊介绍: Energy Conversion and Management: X is the open access extension of the reputable journal Energy Conversion and Management, serving as a platform for interdisciplinary research on a wide array of critical energy subjects. The journal is dedicated to publishing original contributions and in-depth technical review articles that present groundbreaking research on topics spanning energy generation, utilization, conversion, storage, transmission, conservation, management, and sustainability. The scope of Energy Conversion and Management: X encompasses various forms of energy, including mechanical, thermal, nuclear, chemical, electromagnetic, magnetic, and electric energy. It addresses all known energy resources, highlighting both conventional sources like fossil fuels and nuclear power, as well as renewable resources such as solar, biomass, hydro, wind, geothermal, and ocean energy.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信