Domagoj Dorešić , Dilan Pathirana , Daniel Weindl , Jan Hasenauer
{"title":"具有定性或半定量数据的常微分方程模型的可辨识性和不确定性","authors":"Domagoj Dorešić , Dilan Pathirana , Daniel Weindl , Jan Hasenauer","doi":"10.1016/j.coisb.2025.100558","DOIUrl":null,"url":null,"abstract":"<div><div>The estimation of unknown parameters is a key step in the development of mechanistic dynamical models for biological processes. While quantitative measurements are typically used for model calibration, in many applications, only semiquantitative or qualitative observations are available, posing unique challenges for parameter estimation.</div><div>Specialized approaches have been developed to integrate such data, offering trade-offs in bias, flexibility, and computational efficiency. Most of these approaches involve a recording function that maps the quantitative model onto nonabsolute data; however, this introduces additional degrees of freedom that can contribute to non-identifiability. Reliable calibration therefore requires structural and practical identifiability analysis, alongside robust uncertainty quantification.</div><div>In this work, we provide an overview of available methods, critically examine them with respect to identifiability and uncertainty considerations, identify methodological gaps, outline strategies to improve computational efficiency, and advocate for the development of standardized benchmarking frameworks to support informed method selection and best practices.</div></div>","PeriodicalId":37400,"journal":{"name":"Current Opinion in Systems Biology","volume":"42 ","pages":"Article 100558"},"PeriodicalIF":2.2000,"publicationDate":"2025-09-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Identifiability and uncertainty for ordinary differential equation models with qualitative or semiquantitative data\",\"authors\":\"Domagoj Dorešić , Dilan Pathirana , Daniel Weindl , Jan Hasenauer\",\"doi\":\"10.1016/j.coisb.2025.100558\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>The estimation of unknown parameters is a key step in the development of mechanistic dynamical models for biological processes. While quantitative measurements are typically used for model calibration, in many applications, only semiquantitative or qualitative observations are available, posing unique challenges for parameter estimation.</div><div>Specialized approaches have been developed to integrate such data, offering trade-offs in bias, flexibility, and computational efficiency. Most of these approaches involve a recording function that maps the quantitative model onto nonabsolute data; however, this introduces additional degrees of freedom that can contribute to non-identifiability. Reliable calibration therefore requires structural and practical identifiability analysis, alongside robust uncertainty quantification.</div><div>In this work, we provide an overview of available methods, critically examine them with respect to identifiability and uncertainty considerations, identify methodological gaps, outline strategies to improve computational efficiency, and advocate for the development of standardized benchmarking frameworks to support informed method selection and best practices.</div></div>\",\"PeriodicalId\":37400,\"journal\":{\"name\":\"Current Opinion in Systems Biology\",\"volume\":\"42 \",\"pages\":\"Article 100558\"},\"PeriodicalIF\":2.2000,\"publicationDate\":\"2025-09-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Current Opinion in Systems Biology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2452310025000186\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current Opinion in Systems Biology","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2452310025000186","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
Identifiability and uncertainty for ordinary differential equation models with qualitative or semiquantitative data
The estimation of unknown parameters is a key step in the development of mechanistic dynamical models for biological processes. While quantitative measurements are typically used for model calibration, in many applications, only semiquantitative or qualitative observations are available, posing unique challenges for parameter estimation.
Specialized approaches have been developed to integrate such data, offering trade-offs in bias, flexibility, and computational efficiency. Most of these approaches involve a recording function that maps the quantitative model onto nonabsolute data; however, this introduces additional degrees of freedom that can contribute to non-identifiability. Reliable calibration therefore requires structural and practical identifiability analysis, alongside robust uncertainty quantification.
In this work, we provide an overview of available methods, critically examine them with respect to identifiability and uncertainty considerations, identify methodological gaps, outline strategies to improve computational efficiency, and advocate for the development of standardized benchmarking frameworks to support informed method selection and best practices.
期刊介绍:
Current Opinion in Systems Biology is a new systematic review journal that aims to provide specialists with a unique and educational platform to keep up-to-date with the expanding volume of information published in the field of Systems Biology. It publishes polished, concise and timely systematic reviews and opinion articles. In addition to describing recent trends, the authors are encouraged to give their subjective opinion on the topics discussed. As this is such a broad discipline, we have determined themed sections each of which is reviewed once a year. The following areas will be covered by Current Opinion in Systems Biology: -Genomics and Epigenomics -Gene Regulation -Metabolic Networks -Cancer and Systemic Diseases -Mathematical Modelling -Big Data Acquisition and Analysis -Systems Pharmacology and Physiology -Synthetic Biology -Stem Cells, Development, and Differentiation -Systems Biology of Mold Organisms -Systems Immunology and Host-Pathogen Interaction -Systems Ecology and Evolution