Lihua Hu , Suning Zhang , Peishen Zhao , Jie Yang , Gongde Wu , Wei Xu
{"title":"la掺杂CeO2纳米花催化剂用于CO2和甲醇直接合成碳酸二甲酯","authors":"Lihua Hu , Suning Zhang , Peishen Zhao , Jie Yang , Gongde Wu , Wei Xu","doi":"10.1016/j.jre.2025.03.026","DOIUrl":null,"url":null,"abstract":"<div><div>The catalytic direct synthesis of dimethyl carbonate (DMC) from CO<sub>2</sub> and methanol is a crucial approach to utilizing CO<sub>2</sub> and producing high-value chemicals. However, the high stability of the CO<sub>2</sub> molecule imposes thermodynamic limitations on this reaction pathway, along with challenges related to insufficient catalyst activity and stability. Currently, solutions primarily focus on developing efficient catalyst. Herein, La-doped CeO<sub>2</sub> nanoflower catalysts (La<sub><em>x</em></sub>CeO<sub>2</sub>) were synthesized via hydrothermal method. Characterization reveals that La doping optimizes the pore structure and enriched oxygen vacancies, thereby enhancing catalytic performance. Notably, La<sub>0.1</sub>CeO<sub>2</sub> exhibits the largest pore size and highest oxygen vacancy content, achieving a remarkable DMC productivity of 9.42 mmol/g under 140 °C, 4 MPa of CO<sub>2</sub>, and 3 h of reaction, surpassing pure CeO<sub>2</sub> nanoflowers. Based on experimental findings and <em>in-situ</em> diffuse infrared Fourier transform analysis, a plausible reaction pathway was proposed. This work underscores the potential of La<sub><em>x</em></sub>CeO<sub>2</sub> nanoflowers as efficient catalysts for sustainable CO<sub>2</sub> conversion to DMC.</div></div>","PeriodicalId":16940,"journal":{"name":"Journal of Rare Earths","volume":"43 10","pages":"Pages 2177-2185"},"PeriodicalIF":7.2000,"publicationDate":"2025-03-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"La-doped CeO2 nanoflowers catalysts for direct synthesis of dimethyl carbonate from CO2 and methanol\",\"authors\":\"Lihua Hu , Suning Zhang , Peishen Zhao , Jie Yang , Gongde Wu , Wei Xu\",\"doi\":\"10.1016/j.jre.2025.03.026\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>The catalytic direct synthesis of dimethyl carbonate (DMC) from CO<sub>2</sub> and methanol is a crucial approach to utilizing CO<sub>2</sub> and producing high-value chemicals. However, the high stability of the CO<sub>2</sub> molecule imposes thermodynamic limitations on this reaction pathway, along with challenges related to insufficient catalyst activity and stability. Currently, solutions primarily focus on developing efficient catalyst. Herein, La-doped CeO<sub>2</sub> nanoflower catalysts (La<sub><em>x</em></sub>CeO<sub>2</sub>) were synthesized via hydrothermal method. Characterization reveals that La doping optimizes the pore structure and enriched oxygen vacancies, thereby enhancing catalytic performance. Notably, La<sub>0.1</sub>CeO<sub>2</sub> exhibits the largest pore size and highest oxygen vacancy content, achieving a remarkable DMC productivity of 9.42 mmol/g under 140 °C, 4 MPa of CO<sub>2</sub>, and 3 h of reaction, surpassing pure CeO<sub>2</sub> nanoflowers. Based on experimental findings and <em>in-situ</em> diffuse infrared Fourier transform analysis, a plausible reaction pathway was proposed. This work underscores the potential of La<sub><em>x</em></sub>CeO<sub>2</sub> nanoflowers as efficient catalysts for sustainable CO<sub>2</sub> conversion to DMC.</div></div>\",\"PeriodicalId\":16940,\"journal\":{\"name\":\"Journal of Rare Earths\",\"volume\":\"43 10\",\"pages\":\"Pages 2177-2185\"},\"PeriodicalIF\":7.2000,\"publicationDate\":\"2025-03-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Rare Earths\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1002072125001140\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Rare Earths","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1002072125001140","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, APPLIED","Score":null,"Total":0}
La-doped CeO2 nanoflowers catalysts for direct synthesis of dimethyl carbonate from CO2 and methanol
The catalytic direct synthesis of dimethyl carbonate (DMC) from CO2 and methanol is a crucial approach to utilizing CO2 and producing high-value chemicals. However, the high stability of the CO2 molecule imposes thermodynamic limitations on this reaction pathway, along with challenges related to insufficient catalyst activity and stability. Currently, solutions primarily focus on developing efficient catalyst. Herein, La-doped CeO2 nanoflower catalysts (LaxCeO2) were synthesized via hydrothermal method. Characterization reveals that La doping optimizes the pore structure and enriched oxygen vacancies, thereby enhancing catalytic performance. Notably, La0.1CeO2 exhibits the largest pore size and highest oxygen vacancy content, achieving a remarkable DMC productivity of 9.42 mmol/g under 140 °C, 4 MPa of CO2, and 3 h of reaction, surpassing pure CeO2 nanoflowers. Based on experimental findings and in-situ diffuse infrared Fourier transform analysis, a plausible reaction pathway was proposed. This work underscores the potential of LaxCeO2 nanoflowers as efficient catalysts for sustainable CO2 conversion to DMC.
期刊介绍:
The Journal of Rare Earths reports studies on the 17 rare earth elements. It is a unique English-language learned journal that publishes works on various aspects of basic theory and applied science in the field of rare earths (RE). The journal accepts original high-quality original research papers and review articles with inventive content, and complete experimental data. It represents high academic standards and new progress in the RE field. Due to the advantage of abundant RE resources of China, the research on RE develops very actively, and papers on the latest progress in this field emerge every year. It is not only an important resource in which technicians publish and obtain their latest research results on RE, but also an important way of reflecting the updated progress in RE research field.
The Journal of Rare Earths covers all research and application of RE rare earths including spectroscopy, luminescence and phosphors, rare earth catalysis, magnetism and magnetic materials, advanced rare earth materials, RE chemistry & hydrometallurgy, RE metallography & pyrometallurgy, RE new materials, RE solid state physics & solid state chemistry, rare earth applications, RE analysis & test, RE geology & ore dressing, etc.