{"title":"电路设计中位置优化的精确算法","authors":"Binqi Zhang , Lu Zhen , Gilbert Laporte","doi":"10.1016/j.eng.2025.03.020","DOIUrl":null,"url":null,"abstract":"<div><div>Placement optimization is a crucial phase in chip design, involving the strategic arrangement of cells within a limited region to enhance space utilization and reduce wirelength. Chip design enterprises need to optimize the placement according to design rules to meet customer demands. While mixed-cell-height circuits are widely used in modern chip design, few studies have simultaneously considered the non-overlapping cells, rails alignment, and minimum implantation area constraints in the placement optimization problems. Hence, this study involves preprocessing the non-linear parts and developing a mixed-integer linear programming model to reduce the cost of legalizing chip placements for businesses. Furthermore, this study designs and implements an exact algorithm based on Benders decomposition, utilizing dual theory to obtain an optimal cut and iteratively solve for the coordinates of cells. Numerical experiments across various scales validate the performance of the algorithm. Through a detailed analysis of the shape of the chip region division, the proportion of different types of cells, the total number of cells and bins, and their impact on the placement, we derive some potentially useful design insights that can benefit chip design enterprises.</div></div>","PeriodicalId":11783,"journal":{"name":"Engineering","volume":"52 ","pages":"Pages 278-296"},"PeriodicalIF":11.6000,"publicationDate":"2025-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"An Exact Algorithm for Placement Optimization in Circuit Design\",\"authors\":\"Binqi Zhang , Lu Zhen , Gilbert Laporte\",\"doi\":\"10.1016/j.eng.2025.03.020\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Placement optimization is a crucial phase in chip design, involving the strategic arrangement of cells within a limited region to enhance space utilization and reduce wirelength. Chip design enterprises need to optimize the placement according to design rules to meet customer demands. While mixed-cell-height circuits are widely used in modern chip design, few studies have simultaneously considered the non-overlapping cells, rails alignment, and minimum implantation area constraints in the placement optimization problems. Hence, this study involves preprocessing the non-linear parts and developing a mixed-integer linear programming model to reduce the cost of legalizing chip placements for businesses. Furthermore, this study designs and implements an exact algorithm based on Benders decomposition, utilizing dual theory to obtain an optimal cut and iteratively solve for the coordinates of cells. Numerical experiments across various scales validate the performance of the algorithm. Through a detailed analysis of the shape of the chip region division, the proportion of different types of cells, the total number of cells and bins, and their impact on the placement, we derive some potentially useful design insights that can benefit chip design enterprises.</div></div>\",\"PeriodicalId\":11783,\"journal\":{\"name\":\"Engineering\",\"volume\":\"52 \",\"pages\":\"Pages 278-296\"},\"PeriodicalIF\":11.6000,\"publicationDate\":\"2025-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Engineering\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2095809925001687\",\"RegionNum\":1,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Engineering","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2095809925001687","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
An Exact Algorithm for Placement Optimization in Circuit Design
Placement optimization is a crucial phase in chip design, involving the strategic arrangement of cells within a limited region to enhance space utilization and reduce wirelength. Chip design enterprises need to optimize the placement according to design rules to meet customer demands. While mixed-cell-height circuits are widely used in modern chip design, few studies have simultaneously considered the non-overlapping cells, rails alignment, and minimum implantation area constraints in the placement optimization problems. Hence, this study involves preprocessing the non-linear parts and developing a mixed-integer linear programming model to reduce the cost of legalizing chip placements for businesses. Furthermore, this study designs and implements an exact algorithm based on Benders decomposition, utilizing dual theory to obtain an optimal cut and iteratively solve for the coordinates of cells. Numerical experiments across various scales validate the performance of the algorithm. Through a detailed analysis of the shape of the chip region division, the proportion of different types of cells, the total number of cells and bins, and their impact on the placement, we derive some potentially useful design insights that can benefit chip design enterprises.
期刊介绍:
Engineering, an international open-access journal initiated by the Chinese Academy of Engineering (CAE) in 2015, serves as a distinguished platform for disseminating cutting-edge advancements in engineering R&D, sharing major research outputs, and highlighting key achievements worldwide. The journal's objectives encompass reporting progress in engineering science, fostering discussions on hot topics, addressing areas of interest, challenges, and prospects in engineering development, while considering human and environmental well-being and ethics in engineering. It aims to inspire breakthroughs and innovations with profound economic and social significance, propelling them to advanced international standards and transforming them into a new productive force. Ultimately, this endeavor seeks to bring about positive changes globally, benefit humanity, and shape a new future.