具有磁-介电协同作用的n掺杂FeCoNi/MoS2@cnts/cnfs气凝胶用于隔热、红外隐身和电磁波吸收

IF 11.6 2区 材料科学 Q1 CHEMISTRY, PHYSICAL
Haotian Jiang , Yanxiang Wang , Chengjuan Wang , Yingfan Li , Shichao Dai , Bohan Ding , Jinghe Guo , Yanru Yuan , Dongming Liu , Hui Li
{"title":"具有磁-介电协同作用的n掺杂FeCoNi/MoS2@cnts/cnfs气凝胶用于隔热、红外隐身和电磁波吸收","authors":"Haotian Jiang ,&nbsp;Yanxiang Wang ,&nbsp;Chengjuan Wang ,&nbsp;Yingfan Li ,&nbsp;Shichao Dai ,&nbsp;Bohan Ding ,&nbsp;Jinghe Guo ,&nbsp;Yanru Yuan ,&nbsp;Dongming Liu ,&nbsp;Hui Li","doi":"10.1016/j.carbon.2025.120864","DOIUrl":null,"url":null,"abstract":"<div><div>To develop multi-functional microwave-absorbing materials, the FeCoNi/MoS<sub>2</sub>@carbon nanotubes (CNTs)/carbon nanofibers (CNFs) aerogels were synthesized by anchoring FeCoNi and MoS<sub>2</sub> onto an aerogel skeleton via directional freeze-drying and catalytic chemical vapor deposition (CCVD). Through CCVD, a diverse array of heterointerfaces was successfully constructed and defect-containing CNTs were introduced, thereby improving the impedance mismatch of carbon-based aerogels while achieving outstanding microwave absorption performance. The composite aerogel results in a minimum reflection loss of −84.18 dB at the thickness of 1.85 mm and an effective absorption bandwidth of 5.40 GHz at the thickness of 1.75 mm with a 13 % filler ratio. The excellent electromagnetic wave absorbing ability is mainly ascribed to the formation of three-dimensional conduction network, abundant heterogeneous interfaces, and the introduction of magnetic loss. Density functional theory calculations further elucidate that the enhanced dielectric properties arise from asymmetric charge distribution at heterogeneous interfaces (FeCoNi–C and MoS<sub>2</sub>–C), which amplifies interfacial polarization, while the increased density of states optimizes conduction loss. Additionally, the composite aerogels exhibit exceptional thermal insulation and infrared stealth performance. This work pioneers a novel pathway method for multifunctional aerogels using CCVD.</div></div>","PeriodicalId":262,"journal":{"name":"Carbon","volume":"246 ","pages":"Article 120864"},"PeriodicalIF":11.6000,"publicationDate":"2025-09-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"N-doped FeCoNi/MoS2@cnts/cnfs aerogels with magnetic-dielectric synergy for heat insulation, infrared stealth, and electromagnetic wave absorption\",\"authors\":\"Haotian Jiang ,&nbsp;Yanxiang Wang ,&nbsp;Chengjuan Wang ,&nbsp;Yingfan Li ,&nbsp;Shichao Dai ,&nbsp;Bohan Ding ,&nbsp;Jinghe Guo ,&nbsp;Yanru Yuan ,&nbsp;Dongming Liu ,&nbsp;Hui Li\",\"doi\":\"10.1016/j.carbon.2025.120864\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>To develop multi-functional microwave-absorbing materials, the FeCoNi/MoS<sub>2</sub>@carbon nanotubes (CNTs)/carbon nanofibers (CNFs) aerogels were synthesized by anchoring FeCoNi and MoS<sub>2</sub> onto an aerogel skeleton via directional freeze-drying and catalytic chemical vapor deposition (CCVD). Through CCVD, a diverse array of heterointerfaces was successfully constructed and defect-containing CNTs were introduced, thereby improving the impedance mismatch of carbon-based aerogels while achieving outstanding microwave absorption performance. The composite aerogel results in a minimum reflection loss of −84.18 dB at the thickness of 1.85 mm and an effective absorption bandwidth of 5.40 GHz at the thickness of 1.75 mm with a 13 % filler ratio. The excellent electromagnetic wave absorbing ability is mainly ascribed to the formation of three-dimensional conduction network, abundant heterogeneous interfaces, and the introduction of magnetic loss. Density functional theory calculations further elucidate that the enhanced dielectric properties arise from asymmetric charge distribution at heterogeneous interfaces (FeCoNi–C and MoS<sub>2</sub>–C), which amplifies interfacial polarization, while the increased density of states optimizes conduction loss. Additionally, the composite aerogels exhibit exceptional thermal insulation and infrared stealth performance. This work pioneers a novel pathway method for multifunctional aerogels using CCVD.</div></div>\",\"PeriodicalId\":262,\"journal\":{\"name\":\"Carbon\",\"volume\":\"246 \",\"pages\":\"Article 120864\"},\"PeriodicalIF\":11.6000,\"publicationDate\":\"2025-09-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Carbon\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0008622325008802\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Carbon","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0008622325008802","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

摘要

为了开发多功能微波吸收材料,通过定向冷冻干燥和催化化学气相沉积(CCVD),将FeCoNi和MoS2固定在气凝胶骨架上,合成了FeCoNi/MoS2@carbon纳米管/碳纳米纤维气凝胶。通过CCVD,成功构建了多种异质界面,并引入了含缺陷的碳纳米管,从而改善了碳基气凝胶的阻抗失配,同时获得了优异的微波吸收性能。在厚度为1.85 mm时,复合气凝胶的反射损耗最小为−84.18 dB;在厚度为1.75 mm时,当填充率为13%时,有效吸收带宽为5.40 GHz。优异的电磁波吸收能力主要归因于三维传导网络的形成、丰富的非均质界面以及磁损耗的引入。密度泛函理论计算进一步表明,非均质界面(FeCoNi-C和MoS2-C)的电荷分布不对称导致介电性能增强,从而放大了界面极化,而态密度的增加则优化了传导损失。此外,复合气凝胶具有优异的隔热和红外隐身性能。这项工作开创了一种利用CCVD制备多功能气凝胶的新途径方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

N-doped FeCoNi/MoS2@cnts/cnfs aerogels with magnetic-dielectric synergy for heat insulation, infrared stealth, and electromagnetic wave absorption

N-doped FeCoNi/MoS2@cnts/cnfs aerogels with magnetic-dielectric synergy for heat insulation, infrared stealth, and electromagnetic wave absorption
To develop multi-functional microwave-absorbing materials, the FeCoNi/MoS2@carbon nanotubes (CNTs)/carbon nanofibers (CNFs) aerogels were synthesized by anchoring FeCoNi and MoS2 onto an aerogel skeleton via directional freeze-drying and catalytic chemical vapor deposition (CCVD). Through CCVD, a diverse array of heterointerfaces was successfully constructed and defect-containing CNTs were introduced, thereby improving the impedance mismatch of carbon-based aerogels while achieving outstanding microwave absorption performance. The composite aerogel results in a minimum reflection loss of −84.18 dB at the thickness of 1.85 mm and an effective absorption bandwidth of 5.40 GHz at the thickness of 1.75 mm with a 13 % filler ratio. The excellent electromagnetic wave absorbing ability is mainly ascribed to the formation of three-dimensional conduction network, abundant heterogeneous interfaces, and the introduction of magnetic loss. Density functional theory calculations further elucidate that the enhanced dielectric properties arise from asymmetric charge distribution at heterogeneous interfaces (FeCoNi–C and MoS2–C), which amplifies interfacial polarization, while the increased density of states optimizes conduction loss. Additionally, the composite aerogels exhibit exceptional thermal insulation and infrared stealth performance. This work pioneers a novel pathway method for multifunctional aerogels using CCVD.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Carbon
Carbon 工程技术-材料科学:综合
CiteScore
20.80
自引率
7.30%
发文量
0
审稿时长
23 days
期刊介绍: The journal Carbon is an international multidisciplinary forum for communicating scientific advances in the field of carbon materials. It reports new findings related to the formation, structure, properties, behaviors, and technological applications of carbons. Carbons are a broad class of ordered or disordered solid phases composed primarily of elemental carbon, including but not limited to carbon black, carbon fibers and filaments, carbon nanotubes, diamond and diamond-like carbon, fullerenes, glassy carbon, graphite, graphene, graphene-oxide, porous carbons, pyrolytic carbon, and other sp2 and non-sp2 hybridized carbon systems. Carbon is the companion title to the open access journal Carbon Trends. Relevant application areas for carbon materials include biology and medicine, catalysis, electronic, optoelectronic, spintronic, high-frequency, and photonic devices, energy storage and conversion systems, environmental applications and water treatment, smart materials and systems, and structural and thermal applications.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信