{"title":"用随机特征模型求解偏微分方程","authors":"Chunyang Liao","doi":"10.1016/j.cnsns.2025.109343","DOIUrl":null,"url":null,"abstract":"<div><div>Machine learning based partial differential equations (PDEs) solvers have received great attention in recent years. Most progress in this area has been driven by deep neural networks such as physics-informed neural networks (PINNs) and kernel method. In this paper, we introduce a random feature based framework toward efficiently solving PDEs. Random feature method was originally proposed to approximate large-scale kernel machines and can be viewed as a shallow neural network as well. We provide an error analysis for our proposed method along with comprehensive numerical results on several PDE benchmarks. In contrast to the state-of-the-art solvers that face challenges with a large number of collocation points, our proposed method reduces the computational complexity. Moreover, the implementation of our method is simple and does not require additional computational resources. Due to the theoretical guarantee and advantages in computation, our approach is proven to be efficient for solving PDEs.</div></div>","PeriodicalId":50658,"journal":{"name":"Communications in Nonlinear Science and Numerical Simulation","volume":"152 ","pages":"Article 109343"},"PeriodicalIF":3.8000,"publicationDate":"2025-09-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Solving partial differential equations with random feature models\",\"authors\":\"Chunyang Liao\",\"doi\":\"10.1016/j.cnsns.2025.109343\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Machine learning based partial differential equations (PDEs) solvers have received great attention in recent years. Most progress in this area has been driven by deep neural networks such as physics-informed neural networks (PINNs) and kernel method. In this paper, we introduce a random feature based framework toward efficiently solving PDEs. Random feature method was originally proposed to approximate large-scale kernel machines and can be viewed as a shallow neural network as well. We provide an error analysis for our proposed method along with comprehensive numerical results on several PDE benchmarks. In contrast to the state-of-the-art solvers that face challenges with a large number of collocation points, our proposed method reduces the computational complexity. Moreover, the implementation of our method is simple and does not require additional computational resources. Due to the theoretical guarantee and advantages in computation, our approach is proven to be efficient for solving PDEs.</div></div>\",\"PeriodicalId\":50658,\"journal\":{\"name\":\"Communications in Nonlinear Science and Numerical Simulation\",\"volume\":\"152 \",\"pages\":\"Article 109343\"},\"PeriodicalIF\":3.8000,\"publicationDate\":\"2025-09-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Communications in Nonlinear Science and Numerical Simulation\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S100757042500752X\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Communications in Nonlinear Science and Numerical Simulation","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S100757042500752X","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
Solving partial differential equations with random feature models
Machine learning based partial differential equations (PDEs) solvers have received great attention in recent years. Most progress in this area has been driven by deep neural networks such as physics-informed neural networks (PINNs) and kernel method. In this paper, we introduce a random feature based framework toward efficiently solving PDEs. Random feature method was originally proposed to approximate large-scale kernel machines and can be viewed as a shallow neural network as well. We provide an error analysis for our proposed method along with comprehensive numerical results on several PDE benchmarks. In contrast to the state-of-the-art solvers that face challenges with a large number of collocation points, our proposed method reduces the computational complexity. Moreover, the implementation of our method is simple and does not require additional computational resources. Due to the theoretical guarantee and advantages in computation, our approach is proven to be efficient for solving PDEs.
期刊介绍:
The journal publishes original research findings on experimental observation, mathematical modeling, theoretical analysis and numerical simulation, for more accurate description, better prediction or novel application, of nonlinear phenomena in science and engineering. It offers a venue for researchers to make rapid exchange of ideas and techniques in nonlinear science and complexity.
The submission of manuscripts with cross-disciplinary approaches in nonlinear science and complexity is particularly encouraged.
Topics of interest:
Nonlinear differential or delay equations, Lie group analysis and asymptotic methods, Discontinuous systems, Fractals, Fractional calculus and dynamics, Nonlinear effects in quantum mechanics, Nonlinear stochastic processes, Experimental nonlinear science, Time-series and signal analysis, Computational methods and simulations in nonlinear science and engineering, Control of dynamical systems, Synchronization, Lyapunov analysis, High-dimensional chaos and turbulence, Chaos in Hamiltonian systems, Integrable systems and solitons, Collective behavior in many-body systems, Biological physics and networks, Nonlinear mechanical systems, Complex systems and complexity.
No length limitation for contributions is set, but only concisely written manuscripts are published. Brief papers are published on the basis of Rapid Communications. Discussions of previously published papers are welcome.