海上风力养殖用同心单桩网箱一体化结构的水动力分析

IF 5.5 2区 工程技术 Q1 ENGINEERING, CIVIL
Cheng Peng , Guangyuan Wang , Zhongrui Lv , Jianfei Liu , Qian Ma
{"title":"海上风力养殖用同心单桩网箱一体化结构的水动力分析","authors":"Cheng Peng ,&nbsp;Guangyuan Wang ,&nbsp;Zhongrui Lv ,&nbsp;Jianfei Liu ,&nbsp;Qian Ma","doi":"10.1016/j.oceaneng.2025.122862","DOIUrl":null,"url":null,"abstract":"<div><div>Integrating marine aquaculture with offshore wind energy presents a promising pathway towards a sustainable blue economy, but introduces complex hydrodynamic challenges. To address the lack of efficient predictive tools for such integrated systems, this paper develops a novel semi-analytical model based on the Matched Eigenfunction Expansion Method to investigate the hydrodynamics of a Concentric Monopile-Cage Integrated Structure (CMCIS). A systematic parametric study reveals critical physical phenomena with significant design implications. It is found that severe biofouling can transform the cage into the dominant source of load, causing the total horizontal force to exceed that on an isolated monopile. More critically, a severe design pitfall is identified: a wide annular gap can excite powerful fluid resonance under long-wave conditions, leading to a catastrophic load amplification that can be nearly six times the force on an isolated monopile and more than double the monopile’s own maximum force under any wave condition. Conversely, the analysis demonstrates that increasing the cage’s submergence depth is a highly effective strategy for mitigating these loads. The developed model and the physical insights gained provide crucial guidance for the safe and optimal design of these integrated systems.</div></div>","PeriodicalId":19403,"journal":{"name":"Ocean Engineering","volume":"342 ","pages":"Article 122862"},"PeriodicalIF":5.5000,"publicationDate":"2025-09-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Hydrodynamic analysis of a concentric monopile-cage integrated structure for offshore wind-aquaculture applications\",\"authors\":\"Cheng Peng ,&nbsp;Guangyuan Wang ,&nbsp;Zhongrui Lv ,&nbsp;Jianfei Liu ,&nbsp;Qian Ma\",\"doi\":\"10.1016/j.oceaneng.2025.122862\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Integrating marine aquaculture with offshore wind energy presents a promising pathway towards a sustainable blue economy, but introduces complex hydrodynamic challenges. To address the lack of efficient predictive tools for such integrated systems, this paper develops a novel semi-analytical model based on the Matched Eigenfunction Expansion Method to investigate the hydrodynamics of a Concentric Monopile-Cage Integrated Structure (CMCIS). A systematic parametric study reveals critical physical phenomena with significant design implications. It is found that severe biofouling can transform the cage into the dominant source of load, causing the total horizontal force to exceed that on an isolated monopile. More critically, a severe design pitfall is identified: a wide annular gap can excite powerful fluid resonance under long-wave conditions, leading to a catastrophic load amplification that can be nearly six times the force on an isolated monopile and more than double the monopile’s own maximum force under any wave condition. Conversely, the analysis demonstrates that increasing the cage’s submergence depth is a highly effective strategy for mitigating these loads. The developed model and the physical insights gained provide crucial guidance for the safe and optimal design of these integrated systems.</div></div>\",\"PeriodicalId\":19403,\"journal\":{\"name\":\"Ocean Engineering\",\"volume\":\"342 \",\"pages\":\"Article 122862\"},\"PeriodicalIF\":5.5000,\"publicationDate\":\"2025-09-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Ocean Engineering\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0029801825025454\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, CIVIL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ocean Engineering","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0029801825025454","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, CIVIL","Score":null,"Total":0}
引用次数: 0

摘要

将海洋水产养殖与海上风能相结合是实现可持续蓝色经济的一条有希望的途径,但也带来了复杂的水动力挑战。为了解决这种集成系统缺乏有效预测工具的问题,本文建立了一种基于匹配特征函数展开法的新型半解析模型来研究同心单桩-笼式集成结构(CMCIS)的流体动力学。系统的参数研究揭示了具有重要设计意义的关键物理现象。研究发现,严重的生物污染会使网箱变成主要的荷载源,导致总水平力超过孤立单桩的水平力。更关键的是,发现了一个严重的设计缺陷:在长波条件下,宽的环形间隙可以激发强大的流体共振,导致灾难性的负载放大,在任何波浪条件下,这可能是孤立单桩上的力的近六倍,是单桩自身最大力的两倍以上。相反,分析表明,增加保持架的浸入深度是减轻这些载荷的有效策略。开发的模型和获得的物理见解为这些集成系统的安全和优化设计提供了至关重要的指导。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Hydrodynamic analysis of a concentric monopile-cage integrated structure for offshore wind-aquaculture applications
Integrating marine aquaculture with offshore wind energy presents a promising pathway towards a sustainable blue economy, but introduces complex hydrodynamic challenges. To address the lack of efficient predictive tools for such integrated systems, this paper develops a novel semi-analytical model based on the Matched Eigenfunction Expansion Method to investigate the hydrodynamics of a Concentric Monopile-Cage Integrated Structure (CMCIS). A systematic parametric study reveals critical physical phenomena with significant design implications. It is found that severe biofouling can transform the cage into the dominant source of load, causing the total horizontal force to exceed that on an isolated monopile. More critically, a severe design pitfall is identified: a wide annular gap can excite powerful fluid resonance under long-wave conditions, leading to a catastrophic load amplification that can be nearly six times the force on an isolated monopile and more than double the monopile’s own maximum force under any wave condition. Conversely, the analysis demonstrates that increasing the cage’s submergence depth is a highly effective strategy for mitigating these loads. The developed model and the physical insights gained provide crucial guidance for the safe and optimal design of these integrated systems.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Ocean Engineering
Ocean Engineering 工程技术-工程:大洋
CiteScore
7.30
自引率
34.00%
发文量
2379
审稿时长
8.1 months
期刊介绍: Ocean Engineering provides a medium for the publication of original research and development work in the field of ocean engineering. Ocean Engineering seeks papers in the following topics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信