表面湿度传感器的高分辨率表征

IF 3.7 1区 化学 Q1 CHEMISTRY, ANALYTICAL
Domen Hudoklin , Gino Cortellessa , Gaber Begeš , Fausto Arpino , Giorgio Ficco , Vito Fernicola , Samo Beguš
{"title":"表面湿度传感器的高分辨率表征","authors":"Domen Hudoklin ,&nbsp;Gino Cortellessa ,&nbsp;Gaber Begeš ,&nbsp;Fausto Arpino ,&nbsp;Giorgio Ficco ,&nbsp;Vito Fernicola ,&nbsp;Samo Beguš","doi":"10.1016/j.snb.2025.138792","DOIUrl":null,"url":null,"abstract":"<div><div>Accurate characterisation of the surface moisture content at sub-millimetre scales is crucial in various industries, particularly in the safety-critical production of electric motors for the automotive industry, in packaging and in electronics manufacturing. Apart from moisture resolution, existing sensors often lack the necessary spatial resolution, making precise control of adhesion quality difficult. To solve this problem, we present a novel experimental setup that generates controlled micrometre-scale moisture gradients in thin polymer samples, enabling high-resolution calibration of surface-sensitive moisture sensors. Since direct measurement of the moisture profile at this scale is difficult, we validated the generated moisture gradients using computational fluid dynamics simulations and confirmed their linearity and stability. We then used this setup to determine the effective detection depth of a previously developed surface moisture sensor based on diffuse reflectance infrared Fourier transform spectroscopy. Our results show that using this experimental setup alone improves the spatial resolution of the sensor by a factor of 14 – from about 0.7 mm to effectively 48 µm. This approach fills a critical gap by providing a practical means of calibrating and characterising moisture sensors that respond to surface moisture gradients, significantly improving quality control in high-precision manufacturing processes.</div></div>","PeriodicalId":425,"journal":{"name":"Sensors and Actuators B: Chemical","volume":"447 ","pages":"Article 138792"},"PeriodicalIF":3.7000,"publicationDate":"2025-09-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"High-resolution characterisation of the surface moisture sensor\",\"authors\":\"Domen Hudoklin ,&nbsp;Gino Cortellessa ,&nbsp;Gaber Begeš ,&nbsp;Fausto Arpino ,&nbsp;Giorgio Ficco ,&nbsp;Vito Fernicola ,&nbsp;Samo Beguš\",\"doi\":\"10.1016/j.snb.2025.138792\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Accurate characterisation of the surface moisture content at sub-millimetre scales is crucial in various industries, particularly in the safety-critical production of electric motors for the automotive industry, in packaging and in electronics manufacturing. Apart from moisture resolution, existing sensors often lack the necessary spatial resolution, making precise control of adhesion quality difficult. To solve this problem, we present a novel experimental setup that generates controlled micrometre-scale moisture gradients in thin polymer samples, enabling high-resolution calibration of surface-sensitive moisture sensors. Since direct measurement of the moisture profile at this scale is difficult, we validated the generated moisture gradients using computational fluid dynamics simulations and confirmed their linearity and stability. We then used this setup to determine the effective detection depth of a previously developed surface moisture sensor based on diffuse reflectance infrared Fourier transform spectroscopy. Our results show that using this experimental setup alone improves the spatial resolution of the sensor by a factor of 14 – from about 0.7 mm to effectively 48 µm. This approach fills a critical gap by providing a practical means of calibrating and characterising moisture sensors that respond to surface moisture gradients, significantly improving quality control in high-precision manufacturing processes.</div></div>\",\"PeriodicalId\":425,\"journal\":{\"name\":\"Sensors and Actuators B: Chemical\",\"volume\":\"447 \",\"pages\":\"Article 138792\"},\"PeriodicalIF\":3.7000,\"publicationDate\":\"2025-09-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Sensors and Actuators B: Chemical\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0925400525015680\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, ANALYTICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Sensors and Actuators B: Chemical","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0925400525015680","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
引用次数: 0

摘要

精确表征亚毫米级的表面水分含量在各个行业中都是至关重要的,特别是在汽车工业、包装和电子制造业的电动机安全关键生产中。除了湿度分辨率外,现有传感器往往缺乏必要的空间分辨率,难以精确控制粘附质量。为了解决这个问题,我们提出了一种新的实验装置,可以在薄聚合物样品中产生可控的微米级水分梯度,从而实现表面敏感水分传感器的高分辨率校准。由于在这个尺度上直接测量水分剖面是困难的,我们使用计算流体动力学模拟验证了生成的水分梯度,并证实了它们的线性和稳定性。然后,我们使用该设置来确定先前开发的基于漫反射红外傅立叶变换光谱的表面湿度传感器的有效探测深度。我们的结果表明,单独使用该实验装置将传感器的空间分辨率提高了14倍-从约0.7 mm提高到有效的48 µm。这种方法填补了一个关键的空白,提供了一种实用的校准和表征响应表面湿度梯度的湿度传感器的方法,显著改善了高精度制造过程中的质量控制。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
High-resolution characterisation of the surface moisture sensor
Accurate characterisation of the surface moisture content at sub-millimetre scales is crucial in various industries, particularly in the safety-critical production of electric motors for the automotive industry, in packaging and in electronics manufacturing. Apart from moisture resolution, existing sensors often lack the necessary spatial resolution, making precise control of adhesion quality difficult. To solve this problem, we present a novel experimental setup that generates controlled micrometre-scale moisture gradients in thin polymer samples, enabling high-resolution calibration of surface-sensitive moisture sensors. Since direct measurement of the moisture profile at this scale is difficult, we validated the generated moisture gradients using computational fluid dynamics simulations and confirmed their linearity and stability. We then used this setup to determine the effective detection depth of a previously developed surface moisture sensor based on diffuse reflectance infrared Fourier transform spectroscopy. Our results show that using this experimental setup alone improves the spatial resolution of the sensor by a factor of 14 – from about 0.7 mm to effectively 48 µm. This approach fills a critical gap by providing a practical means of calibrating and characterising moisture sensors that respond to surface moisture gradients, significantly improving quality control in high-precision manufacturing processes.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Sensors and Actuators B: Chemical
Sensors and Actuators B: Chemical 工程技术-电化学
CiteScore
14.60
自引率
11.90%
发文量
1776
审稿时长
3.2 months
期刊介绍: Sensors & Actuators, B: Chemical is an international journal focused on the research and development of chemical transducers. It covers chemical sensors and biosensors, chemical actuators, and analytical microsystems. The journal is interdisciplinary, aiming to publish original works showcasing substantial advancements beyond the current state of the art in these fields, with practical applicability to solving meaningful analytical problems. Review articles are accepted by invitation from an Editor of the journal.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信