有界域上退化半椭圆型Kolmogorov方程弱解的有界性

IF 2.3 2区 数学 Q1 MATHEMATICS
Mingyi Hou
{"title":"有界域上退化半椭圆型Kolmogorov方程弱解的有界性","authors":"Mingyi Hou","doi":"10.1016/j.jde.2025.113794","DOIUrl":null,"url":null,"abstract":"<div><div>We establish the boundedness of weak subsolutions for a class of degenerate Kolmogorov equations of the hypoelliptic type, compatible with a homogeneous Lie group structure, within bounded product domains using the De Giorgi iteration. We employ the renormalization formula to handle boundary values and provide energy estimates. An <span><math><msup><mrow><mi>L</mi></mrow><mrow><mn>1</mn></mrow></msup></math></span>–<span><math><msup><mrow><mi>L</mi></mrow><mrow><mi>p</mi></mrow></msup></math></span> type embedding estimate derived from the fundamental solution is utilized to incorporate lower-order divergence terms. This work naturally extends the boundedness theory for uniformly parabolic equations, with matching exponents for the coefficients.</div></div>","PeriodicalId":15623,"journal":{"name":"Journal of Differential Equations","volume":"453 ","pages":"Article 113794"},"PeriodicalIF":2.3000,"publicationDate":"2025-09-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Boundedness of weak solutions to degenerate Kolmogorov equations of hypoelliptic type in bounded domains\",\"authors\":\"Mingyi Hou\",\"doi\":\"10.1016/j.jde.2025.113794\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>We establish the boundedness of weak subsolutions for a class of degenerate Kolmogorov equations of the hypoelliptic type, compatible with a homogeneous Lie group structure, within bounded product domains using the De Giorgi iteration. We employ the renormalization formula to handle boundary values and provide energy estimates. An <span><math><msup><mrow><mi>L</mi></mrow><mrow><mn>1</mn></mrow></msup></math></span>–<span><math><msup><mrow><mi>L</mi></mrow><mrow><mi>p</mi></mrow></msup></math></span> type embedding estimate derived from the fundamental solution is utilized to incorporate lower-order divergence terms. This work naturally extends the boundedness theory for uniformly parabolic equations, with matching exponents for the coefficients.</div></div>\",\"PeriodicalId\":15623,\"journal\":{\"name\":\"Journal of Differential Equations\",\"volume\":\"453 \",\"pages\":\"Article 113794\"},\"PeriodicalIF\":2.3000,\"publicationDate\":\"2025-09-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Differential Equations\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0022039625008216\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Differential Equations","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022039625008216","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

利用De Giorgi迭代建立了一类与齐次李群结构相容的退化半椭圆型Kolmogorov方程弱子解在有界积域内的有界性。我们采用重整化公式来处理边界值并提供能量估计。利用基于基本解的L1-Lp型嵌入估计来合并低阶散度项。这项工作自然地扩展了均匀抛物方程的有界性理论,其中系数的指数相匹配。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Boundedness of weak solutions to degenerate Kolmogorov equations of hypoelliptic type in bounded domains
We establish the boundedness of weak subsolutions for a class of degenerate Kolmogorov equations of the hypoelliptic type, compatible with a homogeneous Lie group structure, within bounded product domains using the De Giorgi iteration. We employ the renormalization formula to handle boundary values and provide energy estimates. An L1Lp type embedding estimate derived from the fundamental solution is utilized to incorporate lower-order divergence terms. This work naturally extends the boundedness theory for uniformly parabolic equations, with matching exponents for the coefficients.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
4.40
自引率
8.30%
发文量
543
审稿时长
9 months
期刊介绍: The Journal of Differential Equations is concerned with the theory and the application of differential equations. The articles published are addressed not only to mathematicians but also to those engineers, physicists, and other scientists for whom differential equations are valuable research tools. Research Areas Include: • Mathematical control theory • Ordinary differential equations • Partial differential equations • Stochastic differential equations • Topological dynamics • Related topics
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信